

330 North College Avenue Indianapolis, Indiana 46202 (317) 685-6600 • Fax (317) 685-6610 1-800-508-8034

email: keramida@keramida.com web page: www.keramida.com

FINAL REMEDIATION WORK PLAN
FORMER GENERAL MOTORS CORPORATION
ALLISON GAS TURBINE DIVISION, PLANT 10
INDIANAPOLIS, INDIANA
IDEM VRP #6991004
KERAMIDA PROJECT NO. 2829E

Submitted To:

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT

Mr. William Wieringa, Project Manager Voluntary Remediation Program Office of Land Quality 100 North Senate Avenue Indianapolis, Indiana 46204

VOLUME 1

REPORT, TABLES, FIGURES

Submitted For:

GENUINE PARTS COMPANY

Mr. Bob Lewis
Environmental, Safety and DOT Compliance Manager
2999 Circle 75 Parkway
Atlanta, Georgia 30339

Submitted By:

KERAMIDA ENVIRONMENTAL, INC.

330 North College Avenue Indianapolis, Indiana 46202 317/685-6600

August 16, 2004

Setting The Standard of Excellence

FINAL REMEDIATION WORK PLAN FORMER GENERAL MOTORS CORPORATION ALLISON GAS TURBINE DIVISION, PLANT 10 INDIANAPOLIS, INDIANA IDEM VRP #6991004 KERAMIDA PROJECT NO. 2829E

Submitted To:

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT

Mr. William Wieringa, Project Manager Voluntary Remediation Program Office of Land Quality 100 North Senate Avenue Indianapolis, Indiana 46204

Submitted For:

GENUINE PARTS COMPANY

Mr. Bob Lewis
Environmental, Safety and DOT Compliance Manager
2999 Circle 75 Parkway
Atlanta, Georgia 30339

Submitted By:

KERAMIDA ENVIRONMENTAL, INC.

330 North College Avenue Indianapolis, Indiana 46202 317/685-6600

August 16, 2004

EXECUTIVE SUMMARY

KERAMIDA Environmental, Inc. (KERAMIDA) has completed the Final Remediation Work Plan (RWP) for the former General Motors Corporation Allison Gas Turbine Division (AGT) Plant 10 located in Indianapolis, Indiana (Site). The purpose of the RWP is to address contamination identified at the Site during due diligence and subsequent Site characterization activities, and to incorporate additional information obtained since submittal of the RWP dated October 30, 2002. Regulatory closure of the Site is being administered through the Indiana Department of Environmental Management (IDEM) Voluntary Remediation Program (VRP).

The Site characterization consisted of the collection and analysis of soil, groundwater, surface water, and sediment samples; a hydrogeological study (groundwater movement under the Site); and human health and ecological exposure assessments. Two source areas (where past industrial activity practices indicate a potential for contamination) were identified at the Site: (1) an eastern source area associated with former solvent operations, and (2) a western source area associated with historic degreasing and industrial waste burial activities. The chemicals of potential concern (COPC) identified for the Site were volatile organic compounds (VOCs), polynuclear aromatic hydrocarbons (PAH), cadmium, chromium, and lead. A human health risk assessment (HHRA) and a screening-level ecological risk assessment (SLERA) were performed following completion of the Site characterization to determine the level of risk to humans or the environment from the COPC.

Concurrent with the Site characterization, additional activities were conducted to further assess the identified COPC at the Site. The design and implementation of remedial measures included: (1) the removal of buried waste in the western portion of the property, (2) the removal of soil containing a VOC/lead "hot spot" along the western property boundary, and (3) installation and start-up of a groundwater remediation system in the eastern and western source areas to remedy potential PAH contamination.

On-Site Results

The results of the HHRA indicate that existing concentrations of COPC in on-Site surface soil, subsurface soil, and groundwater do not present unacceptable risks or hazards to current or potential future on-Site receptors. Existing concentrations of COPC in on-Site groundwater do not present a risk to receptors in Eagle Creek based on groundwater fate and transport modeling.

Though no unacceptable risks to human health and the environment were identified for on-Site COPC, remediation will be performed on-Site as a protective measure. In accordance with IDEM guidance, the remediation will be performed to achieve VRP Tier II Non-Residential Cleanup Goals. Various remedial technologies were screened to treat residual VOC contamination at the Site, and soil vapor extraction (SVE) combined with air sparging (AS) proved to be the most applicable technology. SVE/AS (an engineering practice to remove contaminants from soil and groundwater) is currently being performed in the western and eastern source areas. The SEV/AS system was expanded to further address the VOC "hot spot" area and excavation and disposal was conducted to address the lead component of the "hot spot" area.

In addition to the SVE/AS system, a phytoremediation system consisting of hybrid poplar trees was installed along the entire southern property line to intercept groundwater as it flows off-Site. Phytoremediation is a practice using trees to uptake and cleanse groundwater. It is anticipated that remediation will be completed in five to seven years from the time of initiation, or by 2007 to 2009.

A small area of buried waste from industrial activity will remain beneath the Plant 10 building upon the completion of remediation. A notice will be added to the property deed limiting Site use to non-residential activities, and requiring the use of personal protective equipment if excavation is conducted in the area beneath the on-Site building with remaining buried waste.

Off-Site Areas

Off-Site areas are residential areas to the east and mixed residential and commercial areas to the south. The findings of the Site characterization indicated the presence of VOCs in off-Site groundwater to the southeast and south across Little Eagle Creek. The characteristics of the VOC occurrence in the south off-Site area differed greatly from the eastern on-Site source area and are indicative of the presence of an off-Site source or sources. Off-Site soil data collected during the investigations also confirmed the presence of an off-Site source(s) to the south. IDEM has directed the off-Site responsible parties to perform an investigation of their off-Site sources to the south. This additional off-Site investigation, south of Little Eagle Creek, will be conducted to identify the sources of contaminants detected in that area and to better quantify potential associated risks.

Off-site areas to the east and to the south of the Site have been identified as having potential contamination from the Site. The existing concentrations of COPCs in off-Site groundwater may present risks and hazards that exceed target risk and hazard levels for current or potential future off-Site receptors. The Site is located within a Marion County Health Department No Well Zone, thus minimizing the potential for exposure to groundwater. The Site is not located within a wellhead protection area. An anomalous (uncharacteristic) area of contamination was noted in groundwater to the east of the Site across Olin Avenue. As a protective measure, this area will be remediated by reductive dechlorination to health protective levels. An institutional control, such as a municipal ordinance, also will be used to prevent exposure to off-Site groundwater to the east, southeast, and south of the Site.

The results of the HHRA indicate that existing concentrations of COPCs in surface water and sediment of Little Eagle Creek do not present unacceptable risks or hazards to current or potential future recreational users of the creek. The results of the SLERA indicate that no COPCs were identified for the Little Eagle Creek habitat.

TABLE OF CONTENTS

Sectio		<u>Page</u>
1.0	INTRODUCTION	1
2.0	SITE BACKGROUND	2
2.1	SITE LOCATION AND HISTORY	2
2.2	SITE LOCATION AND HISTORYPHYSICAL SETTING AND LAND USE	3
2.3	SITE DOCUMENTATION	5
2.4	IDEM COMMENT LETTER	8
3.0	SUPPLEMENTAL SITE INVESTIGATION	12
3.1	SOIL SAMPLING AND ANALYSIS	12
3.2	GROUNDWATER SAMPLING AND ANALYSIS	13
3.3	INVESTIGATION RESULTS	
3.3	3.1 Hydrogeology	13
3,	3.2 Soil Analytical Results	14
3.3	3.2 Soil Analytical Results	14
3.4	DISCUSSION	15
3.4	DISCUSSION	15
	4.2 PAHs	16
4.0	SUMMARY OF SITE CHARACTERIZATION	
4.1	INVESTIGATION METHODS	17
	BASELINE HYDROLOGIC ASSESSMENT RESULTS	
4.2	2.1 Regional Geology	18
4.2	2.2 Regional Hydrogeology	20
4.2	2.3 Site Hydrogeology	21
	SOURCES OF CONTAMINATION	
	3.1 Eastern Source Area	23
	3.2 Western Source Area	25
4.3	3.3 Other Potential Sources	27
	CHEMICALS OF CONCERN	30
	4.1 TCE and DNAPL	31
	4.2 PAHs	32
	4.3 Metals	33
	4.4 Surface Soil COPCs	
4.4		
	4.6 Groundwater COPCs	
4.4	4.7 Surface Water COPCs	35
4.4	4.8 Sediment COPCs	35
4.4	4.8 Sediment COPCs 4.9 COPC Characteristics EXTENT OF CONTAMINATION	35
4.5	EXTENT OF CONTAMINATION	35
	5.1 Eastern Source Area	
	5.2 Western Source Area	
	ECOLOGICAL ASSESSMENT	
4:0		
	6.2 Data Evaluation and Identification of COPCs	
	6.3 Conclusions	
	RISK ASSESSMENT	
6.0	CLEANUP CRITERIA SELECTION	
•	SURFACE SOIL	42
6.2	SUBSURFACE SUIL	42

Section	<u>Page</u>
CA CROINING ATER	42
6.3 GROUNDWATER	43
6.4 SURFACE WATER	44
7.0 STATEMENT OF WORK	
7.1 OBJECTIVES OF REMEDIAL ACTION	
·	
·	43
7.4 QUALITY ASSURANCE PROJECT PLAN	40
8.1 BURIED WASTE REMOVAL ACTION	
8.2 GROUNDWATER REMEDIATION PLAN	
8.2.1 Development and Screening of Remedial Alternatives for Source Areas	
8.2.2 Remedial Technologies Screened for Source Areas	
8.2.2.1 Soil Vapor Extraction	4Ω
8.2.2.2 Air Sparging	40
8.2.2.2 Air Sparging	40
8.2.2.3 Groundwater Pump and Treat	49
8.2.3 Treatability Investigation for Source Areas	
8.2.3.1 Soil Vapor Extraction	50
8.2.3.2 Air Sparging	
8.2.4 Selected Remedial Technology for Source Areas	51
8.2.5 Remediation System for Source Areas	
8.2.5.1 Remediation System Design	
8.2.5.2 Remediation System Permitting and Disposal	
8.2.5.3 Remediation System Implementation	54
8.2.6 Off-Site Groundwater Remediation Evaluation	55
8.2.6.1 South Off-Site Area	55
8.2.6.2 East Off-Site Area	56
8.3 VOC AND LEAD SOIL "HOT SPOT" REMEDIATION	60
8.3 VOC AND LEAD SOIL "HOT SPOT" REMEDIATION 8.3.1 Remediation Screening Alternatives	60
8.3.1.1 Soil Vapor Extraction	60
8.3.1.2 Excavation and Off-Site Disposal	60
8.3.2 Selected Remedial Technology	61
8.3.3 Remediation System	
8.4 MONITORING/CONFIRMATION SAMPLING PLAN	
8.4.1 Remediation System Monitoring Plan	63
8.4.1.1 SVE/AS Portion 8.4.1.2 Phytoremediation	63
8.4.1.2 Phytoremediation	63
8.4.1.3 Selective On-Site Groundwater Monitoring	64
8.4.2 On-Site Groundwater Monitoring Plan	64
8.4.3 Plume Stability Groundwater Monitoring Plan	
8.5 DATA MANAGEMENT	65
9.0 OPERATION AND MAINTENANCE PLAN	
9.1 NORMAL OPERATION & MAINTENANCE	
9.1.1 Operation and Monitoring Tasks and Schedule	
9.1.2 Maintenance Tasks and Inspection Schedule	

TABLE OF CONTENTS

Section				<u>Page</u>
9.1.2	2.1 Phytoremediation			67
	1.2 Othor		•	68
9.1.3	Optimum Operating Conditions			68
9.1.4	Waste Management Health & Safety			69
9.1.5	Health & Safety			69
9.2 PO	TENTIAL OPERATING PROBLEMS			69
9.2.1	Potential Sources of Operational Problem Common Remedies of Operational Problem	· S		69
9.2.2	Common Remedies of Operational Proble	ems		70
9.3 CO	NTINGENCY OPERATION & MAINTEN	IANCE PLAN		70
9.3.1	Alternative Operational Procedures			70
932	Notification Procedures			70
10.0 CC	MMUNITY RELATIONS			71
10.1 ΔΕ	FECTED PROPERTY OWNERS			72
10.2 00	NANATINITY ODGANIIZATIONS	engan sebagai kecamatan dari berasa bera		73
10.3 SA	MPLE NOTICE			73
10.4 LO	CAL GOVERNMENT UNITSCAL NEWSPAPERS			74
10.5 LO	CAL NEWSPAPERS		••••	75
10.6 PU	BLIC REPOSITORY	.,		75
11.0 CC	IMPLETION OF REMEDIAL ACTION			75
12.0 SC	BLIC REPOSITORY MPLETION OF REMEDIAL ACTION HEDULE			75
$13.0 \pm CC$	ST ESTIMATE			76
14.0 US	E OF REPORT			76
15.0 LI	MITATIONS	•••••		76
16.0 RE	FERENCES			78

FIGURES

1	Site Location Map
2	Site Map
3	Expanded Site Map
4	Aerial Photograph
5	Site and Surrounding Area Use Map
6	Soil Boring Location Map
7 .	Monitoring Well Location Map
8	Creek Sampling Location Map
9	Geologic Cross-Section Location Map
10	Supplemental Geologic Cross Section Map
11a	Geologic Cross Section A-A'
11b	Geologic Cross Section B-B'
11c -:	Geologic Cross Section C-C'
11d	Geologic Cross Section D-D'
11e	Geologic Cross Section E-E'
11 c	Geologic Cross Section F-F'
11g	Geologic Cross Section G-G'
12a	Groundwater Potentiometric Surface Map – Shallow Wells, February 28, 2000
12b	Groundwater Potentiometric Surface Map – Shallow Wells, November 7, 2000
12c	Groundwater Potentiometric Surface Map – Shallow Wells, June 20-21, 2001
12d	Groundwater Potentiometric Surface Map – Shallow Wells, July 24, 2001
12 u 12e	Groundwater Potentiometric Surface Map – Shallow Wells, January 30, 2002
12f	Groundwater Potentiometric Surface Map – Shallow Wells, July 15-22, 2002 Groundwater Potentiometric Surface Map – Shallow Wells, July 15-22, 2002
121 12g	Groundwater Potentiometric Surface Map – Shallow Wells, December 2003
12g 12h	Groundwater Potentiometric Surface Map – Shallow Wells, March 2004
12ii	Groundwater Potentiometric Surface Map – Shallow Wells, June 2004 Groundwater Potentiometric Surface Map – Shallow Wells, June 2004
12j	Groundwater Potentiometric Surface Map – Shahow Wells, January 30, 2002
12j 12k	Groundwater Potentiometric Surface Map – Deep Wells, July 15-22, 2002
121	Groundwater Potentiometric Surface Map – Deep Wells, December 2003
12m	Groundwater Potentiometric Surface Map – Deep Wells, March 2004
12n	Groundwater Potentiometric Surface Map – Deep Wells, June 2004
13a	Surface Soil Analytical Results Map for VOCs
13b	Surface Soil Analytical Results Map for PAHs
13c	Surface Soil Analytical Results Map for Metals
14a	Subsurface Soil Analytical Results Map for On-Site VOCs
14b	Subsurface Soil Analytical Results Map for Off-Site VOCs
14c	Subsurface Soil Analytical Results Map for PAHs
14d	Subsurface Soil Analytical Results Map for Metals
15a	Shallow Groundwater Analytical Results Map for TCE
15b	Shallow Groundwater Analytical Results Map for cis-1,2-DCE
15c	Shallow Groundwater Analytical Results Map for VC
15d	Shallow Groundwater Analytical Results Map for PAHs
15 u	Shallow Groundwater Analytical Results Map for Lead
16a	Deep Groundwater Analytical Results Map for Cis-1,2-DCE
16b	Deep Groundwater Analytical Results Map for VC
16c	Deep Groundwater Analytical Results Map for PAHs
16d	Deep Groundwater Analytical Results Map for Lead
10a 17	•
1/	Creek Sampling Analytical Results Map

- 18 PCE in Off-Site Soil and Groundwater Summary Map
- 19 Geophysical Anomalies and Test Trench Location Map
- 20 Removal Action Excavation Area Map
- 21 Remediation System Layout with Utilities
- 22a Microcosm Study Results TCE vs. Time
- 22b Microcosm Study Results Initial Aqueous TCE vs. TOC
- 22c Microcosm Study Results Final TCE vs. TOC
- 23 TCE/Lead Remediation Area Layout and Confirmation Sample Locations
- 24 Proposed Groundwater Monitoring Plan
- 25 Detailed Project Schedule

TABLES

- 1 City Directory Search
- 2 Supplemental Investigation Sampling and Analysis Plan
- 3a Water Level Data Upper Sand Unit
- 3b Water Level Data Lower Sand Unit
- 3c Water Level Data Little Eagle Creek
- 4 Calculated Vertical Hydraulic Gradients
- 5 Calculated Horizontal Hydraulic Gradients
- 6a Surface Soil Analytical Results for VOCs (mg/kg)
- 6b Surface Soil Analytical Results for PAHs (mg/kg)
- 6c Surface Soil Analytical Results for Metals (mg/kg)
- 7a Subsurface Soil Analytical Results for VOCs (mg/kg)
- 7b Subsurface Soil Analytical Results for PAHs (mg/kg)
- 7c Subsurface Soil Analytical Results for Metals (mg/kg)
- 8a Geoprobe® Groundwater Analytical Results for VOCs (µg/L)
- 8b Geoprobe® Groundwater Analytical Results for PAHs (μg/L)
- 8c Geoprobe® Groundwater Analytical Results for Metals (µg/L)
- 9a Shallow Monitoring Well Groundwater Analytical Results for VOCs (µg/L)
- 9b Shallow Monitoring Well Groundwater Analytical Results for PAHs (µg/L)
- 9c Shallow Monitoring Well Groundwater Analytical Results for Metals ((µg/L)
- 10a Deep Monitoring Well Groundwater Analytical Results for VOCs (μg/L)
- 10b Deep Monitoring Well Groundwater Analytical Results for PAHs (µg/L)
- 10c Deep Monitoring Well Groundwater Analytical Results for Metals (μg/L)
- 11a Surface Water Analytical Results for VOCs (μg/L)
- 11b Sediment Analytical Results for VOCs (mg/kg)
- 12a Excavation Confirmation Surface Soil Analytical Results for VOCs (mg/kg)
- 12b Excavation Confirmation Surface Soil Analytical Results for PAHs (mg/kg)
- 12c Excavation Confirmation Surface Soil Analytical Results for Metals (mg/kg)
- 13a Excavation Confirmation Subsurface Soil Analytical Results for VOCs (mg/kg)
- 13b Excavation Confirmation Subsurface Soil Analytical Results for PAHs (mg/kg)
- 13c Excavation Confirmation Subsurface Soil Analytical Results for Metals (mg/kg)
- 14 Microcosm Study Results
- 15 Hot Spot Soil VOCs Analytical Results
- 16 Hot Spot Soil Lead Analytical Results

ATTACHMENTS

VOLUME 2

1	IDNR Water Well Information
2	Wellhead Protection Areas Information
3	Marion County Health Department No Well Zone Information
4	IDEM RWP Comment Letter
5	Dry Cleaner Regulatory Information
6	KERAMIDA Standard Operating Procedures
7	Quality Assurance Project Plan
8	Health and Safety Plan

9 Soil Boring Logs

Monitoring Well Logs and Construction Details

VOLUME 3

-11	Laboratory Analytical Reports		
12	Waste Disposal Documentation		
13	Hydrographs		•
14	Contaminants of Concern List		
15	Human Health Risk Assessment		
16	Ecological Risk Assessment		
17	Remedial Design Calculations		
18	Phytoremediation Papers	•	.*
19	Construction Manual and Constru	ction Manual I	Orawings

VOLUME 4

20	Remedial Equipment and Enclosure Specifications
21	Remediation System Boring and Well Construction Logs
22	NEPCCO – Groundwater Remediation System O&M Manual
23	MCHD Water Well Test Results
24	KERAMIDA Operation & Maintenance Logs, Tables and Forms

FINAL REMEDIATION WORK PLAN FORMER GENERAL MOTORS CORPORATION ALLISON GAS TURBINE DIVISION PLANT 10 INDIANAPOLIS, INDIANA IDEM VRP #6991004 KERAMIDA PROJECT NO. 2829E

1.0 INTRODUCTION

KERAMIDA Environmental, Inc. (KERAMIDA) was contracted by Genuine Parts Company (Genuine Parts) to design and implement remedial actions to mitigate identified contamination at the former General Motors Corporation Allison Gas Turbine Division (AGT) Plant 10 in Indianapolis, Indiana (Site). Regulatory closure of the Site is being administered through the Indiana Department of Environmental Management (IDEM) Voluntary Remediation Program (VRP). The purpose of this report is to provide a remediation work plan (RWP) consistent with the July 1996 VRP Guidance that will:

- Identify the chemicals of potential concern (COPCs).
- Summarize the sources and extent of contamination.
- Discuss contaminant exposure pathways and potential risks to human health and the environment.—
- Provide cleanup criteria and objectives.
- Provide a remediation plan that will discuss the remedial alternatives evaluation, present the selected remedial alternative(s), and an operation and maintenance plan for the selected alternative(s).
- Provide a health and safety plan (HASP) and quality assurance project plan (QAPP) for the remediation.
- Provide a community relations plan.
- Outline a project schedule and cost estimate.

It should be noted that soil and groundwater remedial actions have already been performed at the Site in response to the findings of the Site characterization. The groundwater remedial action continues to the present and is being monitored through routine operation and maintenance activity. Therefore, the on-Site groundwater remedial technology selection and detailed system

design and operation sections of this RWP document a remedy that is currently implemented and operating.

2.0 SITE BACKGROUND

Section 2.1 provides information on the Site location and history; Section 2.2 presents information on the physical setting and land use of the area; Section 2.3 presents a summary of available documentation of investigation activities at the Site; and Section 2.4 presents a summary of IDEM comments on the initial RWP submitted for the Site (KERAMIDA report dated October 30, 2002) and KERAMIDA's responses.

2.1 SITE LOCATION AND HISTORY

The subject property is located at 700 North Olin Avenue in Indianapolis, Marion County, Indiana (see Figure 1). The property is the Site of the former General Motors Corporation Allison Gas Turbine Division (AGT) Plant 10. The original facility building was constructed in 1956 and was expanded westward in 1970 to double the floor space. The expansion consisted of a concrete storage pad with a metal roof, which was later enclosed in 1990.

Prior to 1956, the property was vacant land. Between 1956 and 1973, BHT Corporation (BHT) operated the facility for carburetor and brake re-manufacturing. General Motors purchased the property from BHT in 1973 and used the facility for warehousing of obsolete machines, tooling, and fixtures until the mid-1980s, at which time the property became part of the AGT Division. Subsequent to the sale of the property to General Motors, BHT through acquisition and merger became a part of Genuine Parts. AGT continued to use the facility for warehousing until December 1993 when the property was sold to the Allison Engine Company (AEC). AEC sold the facility to Associated Properties, Inc. in 1998. Associated Properties, Inc. sold the facility to American Art Clay Company, Inc. in 2002 (current property owner). American Art Clay Company uses the facility for excess materials storage for a portion of the building and leases the rest of the building to other companies for storage and commercial business.

2.2 PHYSICAL SETTING AND LAND USE

The Site is located on the southwest side of Indianapolis and consists of approximately 5.4 acres of land developed with one approximately 80,000-square foot building. The building is bordered by a fence on the north and paved driveway and parking areas on the east, south, and west. The operational area of the Site is bounded by a chain-link fence, and locking access gates are located on the east and west sides of the property. No water supply wells, basements, or other subsurface structures are present on-Site. On the south side of the property a brushy strip of land extends to the tree line along the bank of Little Eagle Creek. The surface topography over most of the Site is relatively flat. The southern third of the Site slopes moderately to the south, towards Little Eagle Creek until a berm of approximately three feet of height. The berm is located along the wooded area and was created during the leveling of the southern parking lot. Little Eagle Creek flows in a southeasterly direction and converges with Eagle Creek approximately 6,500 feet south-southeast of the Site. Site elevations range from approximately 715 feet above mean sea level (AMSL) at the north end of the property to 705 feet AMSL near Little Eagle Creek. Site maps showing salient Site features are presented in Figures 2 (Site Map) and 3 (Expanded Site Area Map). An aerial photograph of the Site is presented in Figure 4.

The property is zoned industrial. Land use in the surrounding area is mixed use with zoning predominantly residential, general business, and industrial. The property is bordered by a city park (Olin Park) to the north; a residential neighborhood to the east; a wooded area, Little Eagle Creek, and Michigan Meadows Apartments to the south; and Holt Road and an Allison Transmission Plant to the west. Features of the surrounding area are presented in the Site and Surrounding Area Use Map (Figure 5).

Available drilling logs of low and high-capacity water wells on record at the Indiana Department of Natural Resources (IDNR), Division of Water were reviewed. A total of approximately 160 low capacity wells were identified as being located within a one mile radius of the Site, the nearest of which lies approximately 1,000 feet north (upgradient) of the property). The wells are completed within limestone bedrock, clay, or sand and gravel units at depths ranging from 30 (clay or sand/gravel) to 270 (limestone) feet below grade (bg). Fourteen low-capacity wells are located south (downgradient) of the Site within a one-mile radius along Cossell Road and Vermont Street. These wells range in depth from 36 to 270 feet bgs and are also completed in either sand and gravel, clay, or limestone bedrock. The majority of the high-capacity water wells

identified are located to the north, west and south of the Site. A total of 17 high capacity wells were identified within a one-mile radius of the Site. The nearest of these wells is approximately 1,400 feet northwest of the Site along Little Eagle Creek (cross-gradient). No high-capacity water wells were identified south (downgradient) of the Site between the Site and Eagle Creek. Well logs and location maps obtained from IDNR are presented in Attachment 1.

Potable water is supplied to the greater Site area by either the Indianapolis Water Company (IWC) or the Town of Speedway municipal water supply. These entities obtain their water supply from numerous wells in the area, the majority of which are located along Eagle Creek approximately 1.5 miles west (upstream) of the Site. These utilities were contacted to determine which residences along Olin Avenue, Luett Avenue, Cossell Road, and Michigan Street in the greater Site area are serviced by municipal water. The utilities reported no records of service for the following addresses:

- Olin Avenue 709
- Luett Avenue 601, 605
- Cossell Road 3908, 3910

A house-to-house survey of local residences along the east side of Olin Avenue and the west side of Luett Avenue was conducted by the Marion County Health Department (MCHD) in December of 1996. MCHD found a single domestic well located at 709 North Olin Avenue. The construction of the well is unknown. This well was not one of those identified in the IDNR well records. Only well logs completed by the drillers and submitted to IDNR are found in their files. The location of this domestic well is provided on Figure 3. The well was sampled and analyzed for VOC by the MCHD on January 2, 1997; July 14, 1997; March 9, 1998; July 25, 1998; February 25, 1999; June 15, 1999; and September 29, 1999. The only VOC detected at any time was octamethylcyclotetrasiloxane at 4.0 parts per billion in March of 1998. This compound has not been detected at the Site.

Marion County wellhead protection information was reviewed to determine if the Site was located within a wellhead protection area. Five wellhead protection areas currently exist in Marion County (Attachment 2). The Site is not located within a designated wellhead protection area. Geographically, the Site is located between the Riverside Wellhead Protection Area and the Speedway Wellhead Protection Area.

The Site is located in Marion County Health Department (MCHD) No Well Zone (NWZ) Area 2. No Well Zones are designated by the MCHD and reflect zones of contaminated groundwater identified by the MCHD through its routine sampling of potable wells throughout Marion County. The MCHD began building a groundwater quality database and identifying these zones in the late 1990's. Currently seven NWZs have been designated. The MCHD requires permits for all water supply wells in the county. According to the MCHD, permits are not granted to install potable wells in NWZs. Permits for other types of wells such as industrial supply wells may be granted in NWZs on a case-by-case basis. NWZ information is included in Attachment 3.

2.3 SITE DOCUMENTATION

Engineering Science, Inc. (ESI) conducted two environmental investigations at the Site in 1992 and 1993. The initial investigation was documented in the report entitled *Phase I Information Review Report for General Motors Corporation Allison Gas Turbine Division* (Phase I) dated July 1992. The Phase I assessment involved no intrusive exploration of environmental conditions. The Phase I assessment identified the following potential areas of environmental concern at the Site:

- A reported release of 100 gallons of quench oil in the southwest corner of the property.
- A reported release of an unknown amount of hydraulic fluid in the southwest courtyard.
- Possible buried waste at western end of property.
- Possible dumping near the northwest corner of the building.

The Phase I identified the Plant 10 Site as a potential area of concern (PAOC). The report included a recommendation to install three monitoring wells and one soil boring at the Site.

An intrusive follow-up assessment of the PAOCs identified during the Phase I assessment was completed by ESI in November of 1993. Methods and results of the additional investigation were reported in a document entitled *Phase II Site Assessment Final Report for General Motors Corporation Allison Gas Turbine Division* (Phase II) dated November 19, 1993. During the

initial phase of work, three monitoring wells (MW-132, MW-133, and MW-135) were installed and one soil boring (SB-134) was advanced at the Site. A soil gas survey was completed on the western side of the property during this investigation. During the second phase of this investigation four monitoring wells (MW-145 through MW-148) were installed and two soil borings (SB-149 and SB-150) were advanced on-Site.

Results of the investigation identified trichloroethene (TCE), vinyl chloride (VC), total 1,2-dichloroethene (1,2-DCE), tetrachloroethene (PCE), toluene, and methylene chloride in on-Site soil. Compounds most frequently detected included TCE, total 1,2-DCE, and VC. The western side of the Site was confirmed as a PAOC during the Phase II investigation, however the source was unknown.

O'Brien and Gere Engineers, Inc. (OBG) conducted a Buyer Environmental Assessment for the Site in March of 1994. OBG advanced six soil borings (SB-10-1 through SB-10-5 and OBG-10-1) and installed one monitoring well MW-10-1 in soil boring OBG-10-1. Two surface soil samples were collected near an area containing brake pad pieces, two brake pad samples were collected for asbestos testing, and two sludge samples were collected from sumps located south of the building (these sumps were later removed; however, no known environmental information exists regarding their removal). Analytical results for the surface soil samples collected is not available. A total of six subsurface soil samples and three groundwater samples were collected and analyzed for volatile organic compounds (VOCs) and Resource Conservation and Recovery Act (RCRA) metals. VOCs detected in the subsurface soil included total 1,2-DCE and TCE. Metals detected in subsurface soil included arsenic, barium, cadmium, chromium, lead, mercury, and selenium. The analytical results for the three groundwater samples are not available. One groundwater sample was apparently collected from well MW-10-1 and analyzed for VOCs. VOCs detected in MW-10-1 included trans-1,2-DCE, cis-1,2-DCE, and TCE.

Between June 1995 and January 1997, Fluor Daniel GTI, Inc. (FDGTI) conducted additional investigation activities to further assess the magnitude and extent of contamination at the Site, to collect additional hydrogeological data, and to perform a baseline human health risk assessment. Work performed by FDGTI included the installation and sampling of fourteen additional monitoring wells at both on-Site and off-Site locations, soil and groundwater sample collection via push-probe methods (e.g. Hydropunch® and Geoprobe®), Little Eagle Creek stream gauging and surface water sampling, and aquifer slug testing. Results of FDGTI's work are documented

in the Feasibility Study Report (FDGTI 1997a) and the Remedial Investigation Report (FDGTI 1997b). Those reports were prepared prior to Genuine Part's involvement in the project and therefore complete copies are not available.

KERAMIDA was retained by Genuine Parts in 1997 to design and implement remedial actions to mitigate contamination at the Site. KERAMIDA submitted to IDEM an RWP dated October 30, 2002. IDEM reviewed the RWP and provided comments in a "Remediation Work Plan Review" letter dated July 23, 2003 (Attachment 4). Comments made by IDEM requiring further action included the following:

- Demonstration of an additional source(s) of VOCs south of Little Eagle Creek.
- Investigation of the anomalous dissolved TCE occurrence east of the Site.
- Investigation of the anomalous dissolved polynuclear aromatic hydrocarbons (PAHs) occurrence east of the Site.
- Implementation of the proposed TCE/Lead "Hot Spot" soil treatment at the western property boundary.
- Remediation of a residual lead "Hot Spot" in soil in the southwest corner of the Site.
- Establishment of a downgradient monitoring point.

A meeting was held between KERAMIDA and IDEM on August 8, 2003 to discuss the comments and resolutions. In the meeting, a sampling plan was developed to investigate the anomalous dissolved TCE and PAH occurrence(s) east of the Site. It was also decided that MW-169D would serve as the downgradient monitoring point and no additional wells would be required. Investigation of the anomalous TCE and PAH occurrences was completed in late August 2003. Expansion of the southwest remediation system to the TCE/Lead "Hot Spot" was completed in September 2003.

A second meeting was held with IDEM on October 3, 2003 to present findings of the supplemental investigation and remediation system expansion. During the meeting, additional information was requested by IDEM regarding the No Well Zone ordinance.

KERAMIDA prepared an RWP Addendum, dated November 13, 2003 to document activities completed to address the comments made by IDEM in the July 23, 2003 letter and subsequent meetings. The RWP Addendum included the following:

- Responses to individual IDEM comments contained in the July 23, 2003 letter.
- Results of the supplemental investigation to the east of the Site.
- Results of remediation of the TCE/Lead "Hot Spot".
- No Well Zone ordinance documentation.
- Technical summary of all comment responses.

2.4 IDEM COMMENT LETTER

Responses to comments contained in the IDEM July 23, 2003 RWP Review letter are presented below. The IDEM comments are italicized and the KERAMIDA responses are in regular text font. The IDEM letter is included in Attachment 4.

Page 2, paragraph 5; "South of Little Eagle Creek, TCE is absent from the ground water and the detected VOC concentrations are greatest in the deep zone of the upper sand unit. The characteristics of dissolved VOC occurrence in this area differ greatly from the eastern source area of the Site and are indicative of the presence of an off-Site source or sources." At the top of page 3, KERAMIDA states that additional off-Site investigation should be performed to identify sources of contamination and to better quantify risks. IDEM does not agree that the changes in ground water contamination are necessarily indicative of an additional source or sources. The other VOCs present are daughter products of TCE and it is not unreasonable to find them further from the known source area with an absence of TCE. Another source is possible, particularly with respect to the VOC detection in soil at the Michigan Apartments, but there is not conclusive data to attribute the VOCs to another source.

KERAMIDA agrees that VC and cis-1,2-DCE occurrence in the groundwater beneath Michigan Meadows Apartments could, at least in part, be attributable to the Site. Another possible source of VOC contamination has been identified south of the Site (Figure 3). The possible source is a dry cleaner, formerly located in the Michigan Plaza Shopping Center, identified during a regulatory search (Attachment 5) and city directory search (Table 1) conducted by KERAMIDA. According to city directories, the dry cleaner operated as Neff and Accent Cleaners at 3819 Michigan Street from 1970 until the 1990s. Regulatory files indicate that PCE was used by the

facility and generated as a waste product. PCE has been identified in subsurface soil and groundwater in the vicinity of the former dry cleaner and at the south end of the Michigan Meadows Apartments during investigation of the Site (Figures 14b and 18).

Based on the locations and detected concentrations of PCE, a probable source of VOC contamination south of Little Eagle Creek is the former dry cleaner. Indoor air sampling at the Michigan Meadows Apartments and the Michigan Plaza Shopping Center by the property owner (AIMCO) also indicates a source of PCE is present at the Michigan Plaza Shopping Center (Mundell and Associates 2003). IDEM also concluded that a probable source of VOC contamination is present at the Michigan Plaza Shopping Center. Upon review of the AIMCO indoor air sampling report, IDEM assigned an incident number (#730026) to the apparent release and, in a letter dated July 1, 2003, notified the owners of Michigan Plaza Shopping Center that further investigation of the Site is prudent and regulatory oversight for the investigation would be managed by the State Cleanup Program. A copy of the IDEM letter is also included in Attachment 5. An investigation of the apparent PCE release should be conducted by the responsible party(ies) to determine the nature and extent of PCE and any daughter products (e.g. TCE, DCE and VC) and its contribution to VOC occurrence in the subsurface at the Michigan Meadows Apartments. VC and cis-1,2-DCE occurrence in groundwater beneath Michigan Meadows Apartments could, at least in part, be attributable to the Site.

Page 21, paragraph 3: "An anomalous area of dissolved TCE occurrence is noted at the location of MW-163 and KB-1... the cause of the elevated TCE at this location is uncertain and seemingly not associated with the Site." These data points are near MW-162, where sampling has verified low levels of PAH in ground water. All of the samples are across Olin Avenue and within 50 feet of the Site's east property behind that house where MW-162 is located (Figure 12d). There is no information provided to substantiate on off-Site source. Keramida needs to further investigate to demonstrate that this "anomalous" area of TCE contamination has no connection with this Site.

During the August 8, 2003 meeting held between KERAMIDA and IDEM, it was agreed that four additional borings would be advanced for the investigation. The borings were to be located north of MW-162 along Olin Avenue (one boring), in an alley east of MW-162 and northeast of MW-163 (two borings), and along Olin Avenue south of MW-163 (one boring). Soil and

groundwater samples were to be collected from the borings and analyzed for VOCs and PAHs. KERAMIDA performed the supplemental investigation in August of 2003, and Section 2.0 of this RWP details the findings and conclusions of the investigation. In summary, the anomalous occurrence of dissolved TCE in this area appears to be limited in extent and associated with the sanitary sewer system. The relationship of TCE to the sanitary sewer is not known but it is possible that former operations at the Site contributed to its occurrence. As a proactive measure, Genuine Parts Company has decided to mitigate VOC occurrence in this area. The Remedial Alternates Evaluation for this area is presented in Section 8.2.6.2 of this RWP.

On page 19, in paragraph 3, Keramida vaguely discusses the occurrence of PAH. IDEM agrees that the on-Site detections of PAH are inconsequential, but off-Site at the location of MW-162, there have been detections of nine PAH in June 2001 and July 2002. This coincides with the area of off-Site TCE contamination discussed in the previous comment. As stated in the previous comment, further investigation is necessary.

KERAMIDA has performed a subsurface investigation to address this comment. Section 3.0 of this RWP details the findings and conclusions of the investigation. In summary, PAHs were detected in groundwater at greater concentrations further hydraulically upgradient of well MW-162 and, therefore, appear to originate from an off-Site source. Findings of the supplemental investigation indicate that no further investigation of PAH occurrence by Genuine Parts Company is warranted.

Page 16, paragraph 2: During confirmation sampling after the excavation and disposal of soil in the western area, a hotspot of TCE and lead was discovered. Due to the expense of off-Site disposal of soil with elevated TCE, Keramida proposed to lower the TCE content with ASVE and then excavate and dispose of the reduced amount of soil off-Site when it can be characterized primarily for the lead content. This is a practical approach and should be implemented.

KERAMIDA has implemented remediation of the TCE/Lead "Hot Spot." TCE and lead impacted soils were removed during a recent expansion of the remedial system to address the "Hot Spot" area. Confirmation sampling conducted during soil removal indicates that the lead and TCE occurrences have been mitigated. Residual TCE contamination is currently being

addressed by the remediation system. Recent remedial activities within the "Hot Spot" are documented in Section 8.3 of this RWP.

Page 24, paragraph 3: Keramida states that lead in the soil above the Tier II Non-Residential Cleanup Goals (1,000 ppm) has been removed by excavation, except for the KB-33 hotspot and the area under the building. However, in Figure 11d, there is a sample result of 1,400 ppm from the floor of an excavation identified as A1 Floor 2 (May 2001). Previously, Keramida stated that deeper excavation was deemed not possible due to access limitations. Keramida needs to explain the details of the access limitations and the alternatives to meeting the VRP standards. This was also discussed in the meeting held previous to this report preparation.

KERAMIDA agrees that lead contamination exists at or near A1 Floor 2 above the Tier II Non-Residential Cleanup Goal. Because of the location and placement of the Air Sparge/Soil Vapor Extraction (AS/SVE) System piping, immediate removal of lead-impacted soils in this area is not practical. As agreed by the IDEM during the October 3, 2003 meeting, lead in soil removal will be conducted once AS/SVE treatment is completed.

Figure 13b, Deep Ground Water Analytical Results Map For Vinyl Chloride: The complete horizontal extent of vinyl chloride contamination is not known, as evidence by the detections of 8.7 and 6.4 ppb in January and July 2002, respectively, in MW-169D. Keramida has proposed to use a combination of plume stability monitoring and a risk assessment as a closure for the vinyl chloride contamination. Plume stability monitoring requires establishing and maintaining down-gradient monitoring points to demonstrate plume stability. At least one additional monitoring well is necessary down-gradient from MW-169D. If a down-gradient monitor well does not remain uncontaminated, plume stability will be disproved and an alternative remedy will be necessary.

As agreed upon during the August 8, 2003, meeting, MW-169D will act as the necessary downgradient monitoring point within the plume stability monitoring well network. MW-169D contains barely detectable concentrations of VC. A well installed further downgradient would likely not contain detectible VC concentrations. Per IDEM guidance, an evaluation of plume

stability requires detectable concentrations of the COPCs in the perimeter of compliance wells seventy five percent (75%) of the time in order to demonstrate plume stability (IDEM 2001). As also discussed during the meeting and in the response to a previous IDEM comment, well MW-169D is located downgradient of the dry cleaner formerly located at the Michigan Plaza Shopping Center. Possible daughter products of the PCE used at the facility include TCE, DCE, and VC. An investigation of the former dry cleaner by the responsible party(ies) should be conducted to determine what contribution the facility has on VOC occurrence south of Little Eagle Creek and the compliance point.

3.0 SUPPLEMENTAL SITE INVESTIGATION

In August 2003, KERAMIDA performed a Supplemental Site Investigation to address the IDEM comments related to the anomalous presence of TCE and PAHs east of the Site as discussed above. The following sections detail the field methods used, soil and groundwater analytical results, conclusions of the investigation, and proposed recommendations. All investigation activities were conducted according to the KERAMIDA Standard Operating Procedures (SOPs) presented in Attachment 6 and the QAPP presented in Attachment 7.

3.1 SOIL SAMPLING AND ANALYSIS

A total of four soil borings (KB-48, KB-49, KB-50, and KB-51) were advanced at the Site on August 29, 2003 using a bobcat-mounted Geoprobe[®] percussive rig. Figure 6 shows the boring locations. The soil borings were completed under the direct supervision of Mr. Steve Cobb, Project Scientist with KERAMIDA. Prior to field activities, KERAMIDA contacted the Indiana Underground Pipe Protection Service (IUPPS), who located and marked the underground utilities located at the Site. A safety meeting, including review of the Site HASP, was performed at the beginning of field activities. The HASP is presented in Attachment 8.

The borings were continuously sampled in 4-foot segments, logged for soil type and visual indication of contamination, and field screened for organic vapors with a photo-ionization detector (PID). One subsurface soil sample was collected from each boring for laboratory analysis. The rationale for the boring locations, total depths of the borings, depths from which the soil samples were collected, and the analyses performed are presented in Table 2.

The samples were submitted to Test America Inc., of Indianapolis, Indiana, under proper chain-of-custody protocol for VOC analysis by EPA Method 8260B and for PAH analysis by EPA Method 8310. One duplicate sample and one matrix spike/matrix spike duplicate (MS/MSD) sample were collected for laboratory quality assurance and control (QA/QC). Disposable sampling equipment was utilized and, therefore, no equipment blank samples were collected. The laboratory samples were submitted for Level IV QA/QC documentation. Method reporting limits less than or equal to the Tier II Residential Cleanup Goals were requested from the laboratory.

3.2 GROUNDWATER SAMPLING AND ANALYSIS

One groundwater sample was collected from each boring. The groundwater samples were collected using the Advanced Geoprobe[®] Water Sampler through a four-foot temporary screen installed with the Geoprobe[®]. The groundwater samples were submitted to Test America Inc., of Indianapolis, Indiana, under proper chain-of-custody protocol for analysis of VOCs by EPA Method 8260B and for PAH by EPA Method 8310. One duplicate sample and one MS/MSD sample were collected for laboratory QA/QC. A trip blank was submitted with the samples and analyzed for VOCs only. Disposable sampling equipment was utilized and, therefore, no equipment blank samples were collected. The laboratory samples were submitted for Level IV QA/QC documentation. Method reporting limits less than or equal to the Tier II Residential Cleanup Goals were requested from the laboratory.

3.3 INVESTIGATION RESULTS

The following sections describe Site geologic conditions encountered during the Supplemental Investigation and the soil and groundwater analytical results.

3.3.1 Hydrogeology

Borings advanced during this investigation encountered a surficial silt loam or sand loam. The surficial loam was generally less than six feet thick and was underlain predominantly by sand. Alternating lenses of silt loam and sand loam were encountered in the sand unit to the boring completion depths of twenty to twenty four feet below ground surface (bgs). Logs for the borings advanced during the investigation are provided in Attachment 9.

Groundwater was encountered in the borings at depths ranging from approximately 12 to 20 feet bgs. Although the flow direction of the groundwater could not be determined from the borings, previous monitoring of wells located in this area indicate a generally southerly flow direction (see Tables 3a through 3c).

3.3.2 Soil Analytical Results

The soil analytical results are presented in Tables 7a and 7b and depicted on Figures 14b and 14c. The Tier II Cleanup Goals are provided at the bottom of the tables for comparison with detected concentrations. All soil samples were collected from a depth greater than two feet bgs; therefore, Tier II Cleanup Goals for Subsurface Soil were used in the comparison. All soil analytical results are based on dry weight. Laboratory analytical reports and chain-of-custody documentation are included in Attachment 11.

Table 7a presents a summary of soil VOC analytical results. Methylene Chloride was detected in all five soil samples at concentrations above the Tier II Residential Cleanup Goal for Subsurface Soils. Sample KB-51(14-16) was the only sample containing detectable concentrations of any other VOCs. Trichloroethene was detected in soil sample KB-51(14-16) at a concentration above its Tier II Residential Cleanup Goal. Cis-1,2-DCE and trans-1,2-DCE were detected in KB-51(14-16) at concentrations below their respective Tier II Residential Cleanup Goal. The VOC detections are presented on Figure 14b.

Table 7b presents the soil PAH analytical results. Soil sample KB-48(12-14) contained detectable concentrations of twelve PAH compounds at levels below their respective Tier II Residential Cleanup Goals. No PAHs were detected in the remaining soil samples. The PAH concentrations are presented on Figure 14c.

3.3.3 Groundwater Analytical Results

Groundwater analytical results are presented in Tables 8a and 8b and depicted on Figures 15a through 15d. The Tier II Residential Cleanup Goals are provided at the bottom of each table for comparison with detected concentrations. Laboratory analytical reports and chain-of-custody documentation are included in Attachment 11.

Table 8a presents the groundwater VOC analytical results. Groundwater sample KB-51W was the only sample with detectable concentrations of VOCs. TCE and cis-1,2-DCE were detected in this sample at concentrations greater than their respective Tier II Residential Cleanup Goals. The trip blank contained a detectable concentration of bromodichloromethane. This constituent has not been identified as a contaminant of concern at the Site. The VOC concentrations are presented on Figures 15a through 15c.

Table 8b presents the groundwater PAH analytical results. Groundwater sample KB-48W was the only sample with detectable concentrations of PAHs. Ten PAH compounds were detected in this sample, and six of the PAHs were detected at concentrations greater than their respective Tier II Residential Cleanup Goals. The PAH concentrations are presented on Figure 15d. All laboratory reporting limits were less than or equal to the Tier II Residential Cleanup Goals with the exception of benzo(a)anthracene. The Tier II Residential Cleanup Goal for benzo(a)anthracene is 0.10 micrograms per liter (μ g/L) and the laboratory reporting limit for the groundwater analysis was 0.20 μ g/L. In light of the findings of the supplemental investigation, this reporting level exceedance does not appear to be significant.

3.4 DISCUSSION

3.4.1 **VOCs**

Methylene chloride was detected in all five soil samples. No identifiable concentration gradient or pattern is apparent that would indicate the source. All of the soil samples were collected from a depth just above the observed soil-groundwater interface and likely within the zone of groundwater fluctuation (smear zone). It should be noted that methylene chloride is a common laboratory contaminant. Although it was not detected in the laboratory quality control samples, it is possible that it is a laboratory artifact. Based on the depth of detection (> 12 feet bgs), direct contact with contaminated soils by area residents and workers is improbable. Even if residents or workers did come in contact with contaminated soils, the detected concentrations are well below the direct contact cleanup goal for a residential scenario. The direct contact cleanup goal for a residential scenario is calculated to be 85.3 mg/kg using the 1996 VRP Resource Guide Tier II equations. Construction workers installing utility conduits in the public right-of-ways could come in contact with contaminated soil. Based on a comparison of detected concentrations with allowable exposure concentrations for construction workers, there would be no unacceptable risk to them.

Methylene chloride was not detected in any of the groundwater samples. In fact, methylene chloride has only been detected once in all of the groundwater samples collected during characterization of the Site. The sample was collected in 1997 from MW-155 located along the western (upgradient) property boundary. If present in the soil, methylene chloride does not appear to be adversely impacting groundwater.

Volatilization of methylene chloride to indoor air does not appear to be a concern at the Site. Although there are limited data available to evaluate the pathway, an indirect analysis can be performed. Similar methylene chloride concentrations were detected in subsurface soils at the Site including the western source area. Soil vapor effluent from the remediation systems has never contained detectable methylene chloride concentrations. The laboratory reporting limit for the samples has always been less than the default EPA target soil gas concentration of 150 ppbv for a 10⁻⁵ risk factor (EPA 2001).

TCE and daughter products were detected in soil and groundwater samples collected south (downgradient) of well MW-163. As previously discussed, the soil sample was collected from the apparent smear zone. Soil analytical data are not available for MW-163. Groundwater data from MW-163 and the recent push-probe samples indicate that the anomalous TCE occurrence is limited to the area of the intersection of Olin Avenue and Walnut Street. Well MW-163 is located near a sanitary sewer junction vault present under Olin Avenue. The sewer flows south along Olin Avenue and then turns at the junction vault to flow east along Walnut Street. Locations of the sanitary sewer line and the junction vault are illustrated on Figure 2. Based on the findings of the investigation, the junction vault is the likely source of the anomalous TCE occurrence at MW-163. The source of the TCE associated with the sanitary sewer is not known, but it is possible that former operations at the Site contributed to its occurrence. As a proactive measure, Genuine Parts has decided to mitigate VOC occurrence in this area.

3.4.2 PAHs

PAHs were detected in soil and groundwater only at boring KB-48 located north of MW-162. The soil sample was collected from a depth just above the observed soil-groundwater interface and likely within the zone of groundwater fluctuation (smear zone). This groundwater sample contained more individual PAH compounds, and they were detected at greater concentrations

than in groundwater samples collected from MW-162. The PAH analytical results in groundwater, including historical detections in MW-162, are illustrated in Figure 15d. Soil boring KB-48 was advanced hydraulically upgradient of MW-162, therefore, based on the soil and groundwater analytical results it is apparent that the source(s) of PAHs detected in MW-162 is located north of the Site. Therefore, no further investigation by Genuine Parts is necessary.

4.0 SUMMARY OF SITE CHARACTERIZATION

The following sections summarize the methods and findings of the Site investigation activities including: (1) methodologies; (2) the hydrogeology of the Site and surrounding area; (3) the identified sources of contamination; (4) the chemicals of concern; (5) the extent of contamination; and (6) potential ecological receptors at the Site and surrounding area.

4.1 INVESTIGATION METHODS

The investigation methodologies generally incorporated directed sampling in known or suspected source areas. Site-wide sampling was also conducted to obtain necessary data for closure of the entire Site. Investigation methods followed the KERAMIDA SOPs presented in Attachment 6. The QAPP and HASP are presented in Attachments 7 and 8, respectively. Copies of all soil boring logs and monitoring well logs are provided in Attachments 9 and 10, respectively. Waste disposal documentation is presented in Attachment 12.

Soil, groundwater, sediment, and surface water sample analytical data are provided in Tables 6 through 11 and on Figures 13 through 17. These tables and figures are color-coded to assist in presentation and interpretation of the data. Data coded red indicates that the detected COPC concentration is greater than the Tier II Non-Residential Cleanup Goals. Information coded blue indicates that the concentration is greater than the Tier II Residential Cleanup Goal but less than the Tier II Non-Residential Cleanup Goal. Information coded green indicates that the detected COPC concentration is less than the Tier II Residential Cleanup Goal. Finally, information coded black indicates that the COPC was not detected in that sample. The laboratory reports and chain-of-custody documentation are provided in Attachment 11.

4.2 BASELINE HYDROLOGIC ASSESSMENT RESULTS

This section describes the Site hydrogeological setting based on available reference literature and findings of the Site characterization.

4.2.1 Regional Geology

Indianapolis lies within the Tipton Till Plain physiographic unit of the Central Drift Plain physiographic zone. The Central Drift Plain is composed of a nearly flat glacial till plain, approximately 12,000 mi² in extent, that covers central Indiana. It is underlain by thick till that has been slightly eroded by postglacial streams. The glacial sediments of the till plain were deposited during the pre-Illinoian and Illinoian Age when glaciers covered the northern three-quarters of Indiana. The glaciers deposited a minimum of eight till units, which make up approximately 75% of the deposits in the Tipton Till Plain (USGS 1994).

Glacial drift in Marion County can be divided into three units and ranges in thickness from 15 feet to over 400 feet, with an average thickness of 140 feet (Hartke et al., 1980). The Wisconsinan Drift extends from the ground surface to depths from 15-150 feet bgs. The average thickness of the Wisconsinan Drift is 50-70 feet. Underlying the Wisconsinan Drift is the Illinoian Drift. Located at elevations of 553-765 feet AMSL, the Illinoian Drift thickness ranges in thickness from 12-104 feet, and averages 30-50 feet in thickness. Beneath the Illinoian Drift, lies the Kansan Drift. The surface elevation of the Kansan drift is approximately 675 feet AMSL and drift thickness averages 30-50 feet, but it can be as thick as 200 feet (Harrison, 1963).

In Marion County, only Wisconsinan till materials are known to be exposed at the surface, with thin deposits of modern alluvium overlying the till in some stream valleys (Hartke et al., 1980). The bedrock/till interface averages 100 feet bgs. Glacial Till in Indiana is successively underlain by Late Devonian/Early Mississippian Age shales and siltstones 500-1,000 feet thick, Devonian dolomite and limestone up to 250 feet thick, Silurian limestone and dolomite 200-600 feet thick, late Ordovician shale and limestone 500-1,500 feet thick, Middle Ordovician limestone, dolomite, and sandstone, 50-450 feet thick, which unconformably overlie lower Ordovician dolomite of 20-4,500 feet thickness, Cambrian sandstones, with some siltstone and shale, 1000-3000 feet thick, and finally Precambrian crystalline basement rocks, at depths of 3,000-6,000 feet (USGS 1994).

In the vicinity of the Site in western Indianapolis, the glacial drift ranges from 50-150 feet thick and is immediately underlain by the New Albany Shale. This black and greenish-gray shale is early Mississippian to Devonian in age and ranges from 0-250 feet thick, averaging 90-140 feet. Beneath the New Albany Shale, lie rocks of the Muscatatuck Group, specifically, the North Vernon Limestone Formation and the Jefferson Limestone Formation. Rocks of the Muscatatuck Group are predominantly of middle Devonian Age and average 75 to 125 feet in thickness. The Muscatatuck Group is underlain by rocks of Silurian age that average over 150 feet thick. These rocks include the Wabash Formation, the Louisville Limestone, the Waldron Shale, Limberlost Dolomite, and the Salamonie Dolomite. The Silurian rocks are successively underlain by shale and limestone of Cincinnatian age, the Trenton Limestone, Cambrian, and PreCambrian rocks (Gray et al., 1979).

Soils within the area of the Site are of the Miami-Crosby Association and the Urban land-Fox-Ockley Association. The Miami-Crosby Association is found in slightly to moderately dissected upland plains, between broad ground moraines and bottom land, or between terraces and outwash plains. The association is composed of approximately 60% Miami soils, 20% Crosby soils, and 20% assorted minor soils. The Miami soils grade from a silt loam at the surface to a silty clay loam, to a clay loam, to a loam with depth. They form on nearly level to moderately steep slopes, are well drained, and are located on the sides and tops of hills and knolls. The Crosby soils grade from silt loam at the surface to silty clay loam, to clay loam, to a loam with depth. They form on nearly level to gently sloping land, are somewhat poorly drained, and are located on irregularly shaped flats and broad ridgetops. The minor soils of this association include Brookston, Genessee, Henepin, and Shoals (USDA, 1991).

The Urban land-Fox-Ockley Association is found on broad outwash plains and terraces adjacent to larger bottom land. The association is composed of approximately 33% urban land, 25% Fox soils, 7% Ockley soils, and 32% assorted minor soils. Urban land soils are soils "covered by streets, parking lots, buildings, and other structures that obscure or alter the soil so that identification is not feasible". Fox soils grade from loam at the surface, to sandy clay loam, to gravelly clay loam, to gravelly sand and sand with depth. Fox soils are well-drained, moderately deep over gravelly sand and sand, and are nearly level to moderately sloping. They form on broad, irregularly shaped flats, on sides of drainageways and knolls, and on breaks adjacent to bottom land. The Ockley soils grade from silt loam at the surface, to silty clay loam, to clay loam, to gravelly clay loam, to gravelly sand and sand with depth. They are well drained, deep,

nearly level to gently sloping, and are found on broad, irregularly shaped flats and on short side slopes of drainageways and low knolls. Minor soils in this association include Martinsville, Rensselaer, Sleeth, Westland, and Whitaker (USDA, 1991).

4.2.2 Regional Hydrogeology

The Site lies within the White River Basin, a drainage basin 5,603 mi² in size with an average topographic elevation of 750 feet. The White River Basin overlies the Illinois Basin and the Cincinnati Arch. Bedrock strikes north-northwest, and dips to the southwest into the Illinois Basin; except in the northeastern part of the White River Basin where the Cincinnati Arch is present and where the rocks dip northward into the Michigan Basin (USGS, 1994). The principal direction of drainage in the White River Basin is towards the White River, which has an average discharge of 1,478 cubic feet per second (cfs). Major secondary drainageways are into Eagle Creek, with an average discharge of 146 cfs, and into Fall Creek with an average discharge of 270 cfs (Harrison, 1963). The Site is located in the Little Eagle Creek drainage basin, which drains an area of 26.9 square miles (Hoggatt, 1975) and flows from north to south to discharge into Eagle Creek approximately 6,500 feet south-southeast of the Site.

Three aquifer types occur in Indianapolis: surficial sand and gravel aquifers, buried and discontinuous sand and gravel aquifers, and carbonate bedrock aquifers. The most productive aquifers are the surficial sand and gravel aquifers, which can yield up to 2000 gallons per minute (gal/min) and are the major sources of water for the city of Indianapolis. The surficial sand and gravel aquifers are restricted to major river valleys in the White River Basin. The aquifers range in thickness from 50-100 feet, have hydraulic conductivities ranging from 24-1,500 feet per day (ft/d), and can yield 10-2,000 gal/min (USGS, 1994).

Buried and discontinuous sand and gravel aquifers formed in outwash plain deposits, in valley fill in pre-Illinoian valleys, as thin sheets of stratified drift, and in small pockets of coarse grained glaciolacustrine sediment. These aquifers range in thickness from 5-50 feet, have an average hydraulic conductivity of 433 ft/d, and yield 10-250 gal/min (USGS, 1994).

Carbonate Bedrock aquifers are composed of Devonian, Silurian, and Ordovician rocks, ranging in thickness from 40-300 feet (USGS, 1994). Hydraulic conductivity is extremely variable and is contingent on the fracture density and the degree of weathering of the rock (USGS, 1994). The

average estimated hydraulic conductivity for these aquifers is 13.4 ft/d. Well yields of over 100 gal/min are possible (USGS, 1994).

4.2.3 Site Hydrogeology

Consistent with the baseline geological information, groundwater at the Site occurs in sand and sand-and-gravel out-wash deposits hydraulically stratified by confining layers of silty clay. Two hydrostratigraphic units have been investigated at the Site. The uppermost hydrostratigraphic unit is comprised of sand and sand-and-gravel containing discontinuous layers of silty clay and is encountered beneath approximately 15 feet of surficial fill materials and silty clay. This sand unit extends to approximately 40 to 50 feet bgs. The subjacent hydrostratigraphic unit is comprised of silty clay with thin, inter-bedded, water-bearing sand layers. This silty clay unit separates the upper sand unit from lower water-bearing units observed in well logs from surrounding water well records. Geologic cross-sections A-A' through G-G' (Figures 9, 10, and 11a through 11g) depict the generalized subsurface geology at the Site.

Groundwater level measurements have been collected at the Site since 1995 from monitoring wells installed in both the sand unit and silty clay unit. Table 3 presents a summary of historic water level and groundwater elevation data. The groundwater elevation in the upper sand unit since 1995 has ranged from a low of 695.58 feet AMSL in MW-169D in July 2002 to a high of 702.75 in MW-148 in February 1997. The average groundwater elevation in the upper sand unit since 1995 is 698.90 feet AMSL (approximately 13 to 15 feet bgs). The average groundwater level fluctuation is approximately 1.4 feet during the year. The groundwater elevation in lower silty clay unit ranged from a low of 699.28 feet AMSL in MW-302 in November 1999 to a high of 700.68 in MW-202 in February 1997. The average groundwater elevation in the lower silty clay unit since 1995 is 699.29 feet AMSL. Hydrographs for individual wells are presented in Attachment 13.

Monitoring wells have been installed at various elevations (i.e. shallow wells versus deep wells) within the upper sand unit and lower silty clay unit. Calculated vertical gradients between shallow and deep wells over time are summarized in Table 4. The vertical gradient was calculated by dividing the difference in water level in feet between the shallow and deep well of a monitoring well pair by the distance between their respective screen mid-points. The mid-point of the shallow well screen was calculated by determining the saturated screen thickness and adding half of that thickness to the elevation of the screen bottom. As seen in Table 4, slight

upward and downward gradients have been observed between shallow and deep monitoring wells completed in the upper sand unit. Overall, the average vertical gradient in the upper sand is neutral (-0.0009). A more pronounced downward gradient (0.01) is consistently observed within the lower silty clay unit between wells MW-202 and MW-302 and comparing the upper sand unit (MW-153) and the lower silty clay unit between wells MW-153 and MW-202/MW-302.

The water level data were used to prepare the interpretive groundwater potentiometric surface maps for the shallow and deep monitoring wells. Shallow zone potentiometric surface maps are present as Figures 12a through 12i. The deep zone potentiometric surface is presented as Figures 12j through 12n. The maps present the groundwater potentiometric surface from February 2000 through June 2004. As shown in these figures, groundwater flows in a general southeasterly direction. A more southerly flow component is observed in the western potion of the Site, which turns increasingly eastward towards the eastern portion of the Site and neighboring residential area. Horizontal gradients over time in the shallow zone were calculated and are summarized in Table 5. The horizontal gradient is generally between 0.01 and 0.001 with an average of 0.0066.

Surface water elevations in Little Eagle Creek were collected from stream gauges located at Holt Road and Olin Avenue, concurrent with water level measurements collected from on-Site wells on July 24, 2001 and January 30, 2002. Both the groundwater elevations and surface water elevations are included on Figures 12d and 12e. As seen in Figure 12d, the groundwater potentiometric surface appears to coincide with the surface water elevation of Little Eagle Creek indicating that groundwater is discharging to Little Eagle Creek. In contrast, surface water elevations presented in Figure 12e are higher than groundwater elevations in the vicinity of Little Eagle Creek. These data indicate that Little Eagle Creek also periodically recharges the upper sand unit. The potential for groundwater discharge into Little Eagle Creek is also depicted in geologic cross-sections A-A' and B-B' (Figures 11a and 11b). Figures 12j and 12k present the groundwater potentiometric surface in the deep monitoring wells based on the January 30, 2002 and July 15-22, 2002 water level data, respectively. As seen in these figures, groundwater flow in the deep zone also trends to the south-southeast. The hydraulic gradient in the lower sand was calculated at approximately 0.0025.

Aquifer slug tests were conducted by FDGTI in wells screened within the shallow zone of the upper sand unit, the deep zone of the upper sand unit, and the lower silty clay unit to estimate the hydraulic conductivity (K). Resulting K values were estimated at 137 ft/d for the shallow zone of the upper sand unit, 9.1 ft/d for the deep zone of the upper sand unit, and 0.012 ft/d for the lower silty clay unit. Additional information regarding the slug test methods and analysis used by FDGTI can be found in the Remedial Investigation Report (FDGTI 1997b). Based on the estimated hydraulic conductivity, groundwater seepage velocity of the shallow and deep zone of the upper sand unit was calculated using the equation:

$$v_s = k I/n_e$$

Where:

 v_s = groundwater seepage velocity (ft/d)

k = hydraulic conductivity (ft/d)

I = hydraulic gradient (unitless)

 $n_e = effective porosity (unitless)$

Based on an average K value of 137 ft/d, a hydraulic gradient of 0.0066, and an assumed effective porosity of 0.25, the estimated groundwater seepage velocity in the shallow zone of the upper sand unit is calculated at 3.62 ft/d. Based on an average K value of 9.1 ft/d, a hydraulic gradient of 0.0025, and an assumed effective porosity of 0.25, the estimated groundwater seepage velocity in the deep zone of the upper sand unit is calculated at 0.091 ft/d.

4.3 SOURCES OF CONTAMINATION

Two primary source areas of contamination have been identified at the Site and are referred to as the eastern source area and the western source area.

4.3.1 Eastern Source Area

The eastern source area is thought to be associated with what appears to have been former solvent operations located near the southeastern corner of the building. The exact nature of historic operations and potential contaminant release mechanisms in this area are not known. A former solvent storage tank existed in a partially sub-grade concrete structure that was located outside along the facility wall in this area. General Motors removed the solvent tank and concrete structure in the 1990's. Documentation of this removal is not available, although based

Reference 36 Page 35

on soil data collected since that time the removal of the tank and structure mitigated any source material in this area.

4.3.2 Western Source Area

The western source area is associated with former parts degreasing operations and waste burial activities located in the western portion of the Site. It is reported that after degreasing, parts were placed outside on racks to dry. It is thought that solvent dripping from the drying parts provided a release mechanism to the surface and subsurface. In addition, waste parts, grindings, and other materials used in Site operations were buried en masse or in drums in this area. A geophysical survey conducted in the western source area indicated several waste burial areas (Figure 19). The waste burial and parts drying locations encompass a geographical area of approximately 1.75 acres.

Exploratory trenching was conducted in each geophysical anomaly area to determine the presence of buried waste. The trenching confirmed the presence of buried waste in anomaly areas A1 through A6 and A8. The aggregate of these areas is approximately 23,000 square feet (approximately 0.5 acres). The identified buried waste (approximately 10,000 tons) was removed and properly disposed between April and July of 2001. Confirmation soil sampling conducted during the removal action verifies that all source material in the identified burial areas was removed.

During the removal action, it was observed that buried waste in area A3 extended beneath the building. Soil borings placed inside the building revealed that the buried waste extended beneath the building approximately 100 feet to the east and approximately 75 north from the southwest corner of the building. The average thickness of the buried waste was about three feet. Based on these dimensions, it is estimated that approximately 1,100 tons of waste remains beneath the building (Figure 14c). Removal of the waste is not feasible without demolition of the building. An exposure prevention remedy is proposed for this area.

Subsequent to the removal action, a small area (e.g. "hot spot") of elevated TCE and lead in soil was discovered at KB-33 along the western property boundary during a Site-wide soil investigation in May 2001. During August 2002, soil sampling was conducted to further delineate the "hot spot". All boring installation and sampling activities were completed in accordance with the KERAMIDA SOPs in Attachment 6. Boring logs are provided in Attachment 9. A series of step out borings was placed around KB-33. The soil borings were continuously sampled on two-foot intervals and each sample was screened for volatile vapors using a PID. Select subsurface soil samples were collected from five of the borings (KB-40, KB-

44, KB-45, KB-46 and KB-47) based on the PID readings and analyzed for VOCs by EPA Method 8260. Each two-foot subsurface soil interval was analyzed for total lead by EPA Method 6010. Additional sampling occurred in September 2002 due to a laboratory error. It was necessary to re-sample boring locations KB-40, KB-44, KB-45, and KB-46. Laboratory analytical results for the soil samples are presented in Tables 7a and 7c, and in Figures 14a and 14d. Cross Sections illustrating the findings are provided in Figures 11f and 11g. Based on the results of the supplemental sampling, the TCE "hot spot" was determined to be less than 30 feet in diameter and the lead "hot spot" was determined to be less than 10 feet in diameter. The approximate areal extents of the TCE and lead "hot spots" are illustrated on Figures 14a and 14d. Vertically, TCE occurrence in soil declined an order of magnitude from the fill materials to the native silt loam. Lead occurrence also declined orders of magnitude in the native soil. In general, the "hot spot" was limited to the near-surface fill materials around KB-33. This area is addressed further in Section 8.3 of this RWP.

During the August 2002 mobilization, additional work was completed to further characterize VOC occurrence in groundwater south of the western source area. All well installation and groundwater sampling activities were completed in accordance with the KERAMIDA SOPs in Attachment 6. Boring logs and monitoring well logs are provided in Attachments 9 and 10. A monitoring well pair consisting of MW-172S (shallow) and MW-172D (deep) was installed within the cul-de-sac on Cossell Road. One groundwater sample collected from each well (Figure 7). One Geoprobe groundwater sample was also collected from KB-39 south of Michigan Street and West of Olin Avenue adjacent to the trailer park (Figure 6). groundwater samples were analyzed for VOCs by EPA Method 8260B. Laboratory analytical results for the groundwater samples are presented in Tables 8a and 9a and in Figures 15a through 15c. No VOCs were detected in the groundwater samples from monitoring well MW-172D or boring KB-39. Acetone was detected in the groundwater sample from monitoring well MW-172S at a concentration below its Tier II Residential Cleanup Goal. No other VOCs were detected in the sample from MW-172S. The results of this sampling and historical groundwater sampling indicate that VOCs above the Tier II Non-Residential Cleanup Goal do not extend to the trailer park or the Cossell Road cul-de-sac areas.

4.3.3 Other Potential Sources

The Site is located in an area with a long history of heavy industrial activity. Given the land use of the surrounding area, available information related to environmental concerns in the area of the Site was reviewed to assess the potential for other sources of COPCs found at the Site. The information search consisted of a review of historic aerial photographs, MCHD files, USEPA and IDEM files, city directories, and an environmental database search conducted by Environmental Data Resources, Inc.

Five properties located in close proximity to the Site were identified as potential additional sources of COPCs. These include the Allison Transmission facility located immediately to the west across Holt Road, United Station #6122 located northwest of the Site, the Marathon Oil Terminal located north of the Site, the Coca Cola Bottling facility located to the south, and the former dry cleaner located in the Michigan Plaza Shopping Center south of the Site.

Petroleum hydrocarbon contamination was documented at four of these Sites. Information of environmental concern related to a historic hazardous waste dump at the Allison Transmission Plant 3 was obtained from a CERCLIS Preliminary Assessment Report dated August 27, 1986 and a State Board of Health office memorandum dated August 16, 1985. These documents indicated that potentially hazardous materials such as transite boards (asbestos), foundry sand, sodium hydroxide, scrap metal, heavy metal hydroxides, solvents, and industrial trash resulting from plating, polishing, and manufacturing operations may be located at that Site underneath approximately 20 feet of fill. Other documentation included an IDEM incident reporting log dated June 14, 1988 documenting a release of an unknown quantity of PCE from an underground storage tank (UST) located at Allison Transmission Plant 12.

The dry cleaner, formerly located in the Michigan Plaza Shopping Center, was identified during a regulatory search (Attachment 5) and city directory search (Table 1) conducted by KERAMIDA. According to city directories, the dry cleaner operated as Neff and Accent Cleaners at 3819 Michigan Street from 1970 until the 1990s. USEPA and IDEM records indicate that PCE was used by the facility and generated as a waste product. Indoor air sampling at the Michigan Meadows Apartments and the Michigan Plaza Shopping Center by the property owner (AIMCO) also indicated a source of PCE is present at the Michigan Plaza Shopping Center (Mundell and Associates 2003). IDEM also concluded that a probable source of VOC contamination is present at the Michigan Plaza Shopping Center. Upon review of the AIMCO

indoor air sampling report, IDEM assigned an incident number (#730026) to the apparent release and, in a letter dated July 1, 2003, notified the owners of Michigan Plaza Shopping Center that further investigation of the Site is prudent and regulatory oversight for the investigation would be managed by the State Cleanup Program. A copy of the IDEM letter is also included in Attachment 5.

Historic aerial photographs dated 1941, 1950, 1956, 1962, and 1972 were reviewed to evaluate surrounding land activity over time. The aerial photographs showed the progression of the building expansions at both the Site and Allison Transmission. Land use south of the Site at the current Michigan Meadows Apartments appeared to remain undeveloped until construction of the apartments, which occurred sometime between 1962 and 1972. No other indications of potential industrial operations were noted in the immediate Site area.

In addition to potential sources identified by the information search, off-Site soil, groundwater, and indoor air data collected by KERAMIDA and others indicate that VOC contamination detected south of Little Eagle Creek is, at least in part, attributable to an off-Site source or sources. Soil samples collected from vadose soils on the Michigan Meadows Apartment and Michigan Plaza Shopping Center properties contained PCE and TCE at concentrations indicating an off-Site source (Figures 13a and 14b). The maximum detected concentration of PCE in soil was behind the Michigan Plaza Shopping Center approximately 1,150 feet from the Site (Figure The concentration was an order of magnitude greater than the maximum detected 14b). concentration in the 176 soil samples collected from the Site. PCE has only been detected in approximately 9% of the soil samples at the Site. When detected, PCE is generally present at trace levels. None of the detections exceeded the Tier II Non-Residential Cleanup Goal for PCE. The infrequent and trace-level detections of PCE in soil at the Site indicate that this solvent was not used at the former facility and that it was an impurity in the TCE solvent used. This conclusion is substantiated by information gathered during interviews with former employees. The information indicates PCE was never used at the Site.

TCE is generally absent in groundwater immediately south of Little Eagle Creek (Figure 15a). Groundwater samples collected from boring KB-23 and monitoring well MW-168, approximately 900 feet south of the Site near the Michigan Plaza Shopping Center, contained TCE. No other samples collected south of Little Eagle Creek, including those from between the Site and that location, contained TCE. Most notably, well MW-165 located just across Little

Eagle Creek from well MW-161 and screened in the same interval, has never contained a detectable TCE concentration even though MW-161 has contained up to 4,300 ug/L dissolved TCE.

Well MW-168 is located in the general vicinity of sample locations KB-17 and KB-24 where PCE and TCE were detected in vadose zone soil. PCE was detected in groundwater from MW-168 at a concentration near its Tier II Non-Residential Cleanup Goal (Table 9a). No other off-Site well has contained a detectable dissolved PCE concentration. PCE was detected in the groundwater only one in any one on-Site monitoring well during ten years of monitoring. On-Site well MW-132 contained PCE in February 2000 at a concentration less than that detected in MW-168 (Table 9a).

The PCE and TCE daughter (breakdown) products cis-1,2-DCE and VC have been detected in groundwater south of Little Eagle Creek at concentrations that are orders of magnitude greater than those detected on-Site at similar depth intervals in the lower portion of the sand unit (Figures 15b and 15c). These compounds are generally absent in on-Site groundwater at this depth interval. The dissolved daughter product detections in the deep zone of the sand unit at MW-165 and MW-166, located at the Michigan Meadows Apartments, are orders of magnitude greater than those detected in shallow groundwater at the same locations (Figures 16a and 16b). Organic vapor measurements taken from saturated soil samples during installation of wells MW-165 and MW-166 confirm this observation. PID readings are generally low (< 10 parts per million) in the shallow portion of the water bearing sand unit. Maximum concentrations of organic vapors were detected in soil samples collected from the base of the sand unit. By contrast, PID readings in soil taken during the installation of monitoring wells north of Little Eagle Creek (MW-161) indicate declining VOC vapors with depth to the underlying silty clay. The lowest concentrations were detected at the silty clay interface. Monitoring well construction records indicating PID measurements are provided in Attachment 10.

Dissolved cis-1,2-DCE and VC migrating from the Site would move laterally under Little Eagle Creek. No significant vertical gradients have been identified in the water-bearing sand unit that would cause dissolved contamination to be advectively transported vertically (Table 4) to the lower zone. Since dissolved concentrations of cis-1,2-DCE and VC are greater in the deeper portion of the sand unit, diffusive transport of the compounds from the shallow to deep zone is also not apparent. No migration of dense non-aqueous phase liquid (DNAPL) from the Site has

occurred. In addition, if DNAPL were present in the lower portion of the sand unit off-Site, it should be present at detectable concentrations. No TCE has been detected off-Site in the lower portion of the sand unit. Dissolved cis-1,2-DCE and VC in the shallow groundwater off-Site also appear to be, at least in part, a result of an off-Site source. Concentrations of these compounds are lowest in MW-165 immediately across Little Eagle Creek from the Site and increase to the south onto the apartment complex property (MW-166).

Based on the locations and detected concentrations of PCE, a probable source of VOC contamination south of Little Eagle Creek is the former dry cleaner. As previously discussed, indoor air sampling at the Michigan Meadows Apartments and the Michigan Plaza Shopping Center by the property owner also indicates a source of PCE is present at the Michigan Plaza Shopping Center (Mundell and Associates 2003). IDEM also concluded that a probable source of VOC contamination is present at the Michigan Plaza Shopping Center. An investigation of the apparent PCE release should be conducted by the responsible party(ies) to determine the nature and extent of PCE and any daughter products (e.g. TCE, DCE and VC) and its contribution to VOC occurrence in the subsurface at the Michigan Meadows Apartments. VC and cis-1,2-DCE occurrence in groundwater beneath Michigan Meadows Apartments could however, at least in part, be attributable to the Site.

4.4 CHEMICALS OF CONCERN

The following human-health risk-based screening levels were used to evaluate the available media-specific data and to develop the list of COPCs for the Site:

- On-Site Surface Soil VRP Tier II Non-Residential Cleanup Goals for Surface Soil.
- On-Site Subsurface Soil VRP Tier II Non-Residential Cleanup Goals for Subsurface Soil.
- Off-Site Subsurface Soil VRP Tier II Residential Cleanup Goals for Subsurface Soil.
- On-site Groundwater VRP Tier II Non-Residential Cleanup Goals for Groundwater.
- Off-Site Groundwater VRP Tier II Residential Cleanup Goals for Groundwater.
- Off-Site Surface Water VRP Tier II Residential Cleanup Goals for Groundwater.
- Off-Site Sediment VRP Residential Cleanup Goals for Surface Soil.

VRP does not list screening levels for some chemicals analyzed for the Site. Therefore, the following additional sources were consulted for screening levels:

- EPA Drinking Water Maximum Contaminant Levels (MCL) (EPA 2002b)
- EPA Region 9 Preliminary Remediation Goals (EPA 2000b)
- EPA Region 3 Risk-Based Concentration Tables (EPA 2002a)

Tables 6 through 11 list the analytical data for the Site and the media-specific screening levels. The maximum detected concentration of each chemical in each medium was compared to the appropriate screening level. Those chemicals exceeding one or more screening levels were retained as COPCs for the Site. The following sections present a discussion of the analytical results relative to the screening levels, first for classes of chemicals, and then for individual media. A list of the COPCs retained for the Site is presented in Attachment 14.

4.4.1 TCE and DNAPL

Extensive Site characterization activities have been completed and indicate a minimal presence of DNAPL in the subsurface. VOC occurrence identified in soil and groundwater is primarily residual in nature and does not indicate the presence of free product solvent (DNAPL).

TCE is the only solvent detected in soil at a concentration near or above its residual saturation limit indicating the possible presence of DNAPL. Only one of the 176 soil samples collected from the Site contained a TCE concentration greater than the 1,300 mg/kg saturation limit. The sample, KB-33(4-6) was collected from near-surface fill materials in the western source area. A soil sample (KB-40[6-8]) collected from the subjacent native silty clay contained a TCE concentration one order of magnitude less than its saturation limit. TCE occurrence in the soil in the area of KB-33 is illustrated on Figure 14a.

TCE was detected only once in one groundwater sample at a concentration indicating the possible presence of DNAPL. Groundwater data do not indicate the possible presence of any other solvent. A concentration equal to one percent of the solvent solubility is an industry standard indicator of possible DNAPL presence. In February 1997, a groundwater sample collected from monitoring well MW-132 located in the western source area contained a TCE concentration of 15,000 ug/L. One percent of the TCE solubility is 11,000 ug/L at standard

temperature and pressure conditions. Monitoring has been conducted over a ten-year period in the western source area. TCE occurrence in groundwater is illustrated on Figure 15a.

Well MW-132 is screened in the upper half of the near-surface water-bearing sand unit at approximately 10-20 feet bgs. Adjacent well MW-147 is screened in the lower half of the same sand unit at approximately 20-30 feet bgs. Groundwater samples collected from well MW-147 seldom contained detectable TCE concentrations (Table 9a and Figure 15a). When detected, TCE was present at a concentration several orders of magnitude less than one percent of the solubility. The generalized hydrogeology of this area is illustrated on Figure 11a.

Monitoring wells MW-148, MW-153, and MW-161 are located downgradient of MW-132 (Figures 12a through 12i). Well MW-148 fully penetrates the near-surface water-bearing sand unit; well MW-153 nearly fully penetrates the unit, and well MW-161 penetrates over one-half of the unit (Figure 11a). A silty clay is present subjacent to the sand unit over the entire western source area. Maximum dissolved TCE concentrations detected in these downgradient wells are orders of magnitude less than one percent of solubility. Organic vapor readings taken from soil samples collected during the installation of wells MW-147, MW-148, MW-153 (MW-202), and MW-161 all indicate maximum VOC concentrations near the water table surface in the saturated sand unit. The readings decline with depth to their lowest levels at the base of the sand unit.

Based on the soil and groundwater analytical data and field measurements of organic vapors in the soil, a conceptual model of DNAPL occurrence at the Site can be developed. In general, DNAPL presence is minimal. One localized area of DNAPL occurrence was discovered in the western source area. Apparent TCE solvent occurs in near-surface fill materials at a depth of approximately four to six feet bgs and is absent in the subjacent native soils. The depth to groundwater in the area of detection is approximately 12 feet bgs. The lateral extent of the "hot spot" is less than 30 feet in diameter. Data indicate that migration of DNAPL from the fill materials to the underlying native soils has not occurred.

4.4.2 PAHs

PAHs have not been detected in on-Site surface or subsurface soil at concentrations above screening levels (Tables 6b and 7b; Figures 13b and 14c). PAHs have been randomly detected at concentrations nominally above screening levels in both on-Site and off-Site groundwater (Tables 8b, 9b, 10b; Figures 15d and 16c). No PAH groundwater plume has been identified.

4.4.3 Metals

Cadmium has not been detected at concentrations above its screening level in on-Site surface soil but has been detected at concentrations above this level in on-Site subsurface soil (Tables 6c and 7c and Figures 13c and 14d). Total cadmium has not been detected in either on-Site or off-Site groundwater at concentrations exceeding its screening level (Tables 8c, 9c, and 10c). It is generally contained in buried waste material rather than Site soil and groundwater. No total cadmium groundwater plume has been identified.

Total chromium has not been detected in on-Site surface or subsurface soil at concentrations above its screening level (Tables 6c and 7c; Figure 13c and 14d). Total chromium has not been detected at concentrations above its screening level in on-Site groundwater and has not been detected at concentrations above its screening level in off-Site groundwater (Tables 8c, 9c, and 10c). It is generally contained in buried waste material rather than Site soil and groundwater. No total chromium groundwater plume has been identified.

Lead has been detected in on-Site surface and subsurface soils at concentrations exceeding its screening level (Tables 6c and 7c; Figures 13c and 14d). Lead is also primarily contained in the buried waste, however, it has been detected at concentrations that have resulted in impact to native Site soils. Total lead has been detected at concentrations nominally above its screening level in both on-Site and off-Site groundwater (Tables 8c, 9c, 10c; Figures 15e and 16d). The lead occurrence in groundwater is random with no apparent connection to the western source area. No total lead groundwater plume has been identified. It has been observed that the sampling technique (i.e., standard purge and bail versus low-flow sampling) greatly affects total lead concentrations. Groundwater samples were collected using a low-flow purging technique during the July 2002, groundwater sampling event. KERAMIDA staff observed a reduction of sediment within the sample. This technique is believed to provide a more representative sample of the actual groundwater to evaluate for the metals COPCs. Therefore, the lead concentrations are not a concern for the Site.

4.4.4 Surface Soil COPCs

COPC concentrations in on-Site surface soil were compared to non-residential screening levels because current and future land use indicates only non-residential activities will occur at the Site. None of the detected concentrations exceeded the surface soil screening levels. No surface soil

samples have been collected from off-Site areas. Therefore, no COPCs were obtained for this medium.

4.4.5 Subsurface Soil COPCs

COPC concentrations in on-Site subsurface soil were compared to non-residential screening levels because current and future land use indicates only non-residential activities will occur at the Site. The results indicate that the following COPCs are present in on-Site subsurface soil at concentrations exceeding their screening levels:

- Lead
- Cadmium
- cis-1,2-DCE
- TCE

Soils containing these COPCs above screening levels were all located within the western source area.

COPC concentrations in off-Site subsurface soil were compared to residential screening levels because current off-Site residential land use is expected to continue near the Site. No COPCs were detected in off-Site subsurface soil above the residential screening levels.

4.4.6 Groundwater COPCs

Detected concentrations in on-Site groundwater were compared to non-residential screening levels because current and future land use indicates only non-residential activities will occur at the Site. The results indicate that the following COPCs are present in on-Site groundwater at concentrations exceeding their screening levels:

- cis-1,2-DCE
- TCE
- VC

COPC concentrations in off-Site groundwater were compared to residential screening levels because current off-Site residential land use is expected to continue near the Site. The results indicate that the following COPCs are present in off-Site groundwater at concentrations exceeding their screening levels:

- 1,1-DCE
- cis-1,2-DCE
- TCE
- VC

4.4.7 Surface Water COPCs

COPC concentrations in surface water were compared to residential groundwater screening levels because current off-Site residential land use is expected to continue near the Site. No COPCs were obtained for surface water.

4.4.8 Sediment COPCs

COPC concentrations in sediment were compared to residential surface soil screening levels because current off-Site residential land use is expected to continue near the Site. No COPCs were obtained for sediment.

4.4.9 COPC Characteristics

A discussion of chemical-specific toxicological, physical, and chemical characteristics for Site COPCs is presented in the Human Health Risk Assessment (HHRA) included in Attachment 15 to the RWP.

4.5 EXTENT OF CONTAMINATION

The following sections discuss the horizontal and vertical extent of contamination at the Site.

4.5.1 Eastern Source Area

VOCs were detected in the soils at concentrations below their screening levels in this area. Figures 13a through 13c and 14a through 14d present surface and subsurface soil analytical results for this area. As seen in these figures, VOCs were detected in the soil over an area extending approximately 140 feet south of the building (MW-146) to approximately 240 feet east of the source area (MW-156) located off-Site on the east side of Olin Avenue. It should be noted that subsurface soil samples collected from MW-146, SB-10-5, MW-156, and MW-200, were collected at intervals within the historic range of the groundwater table. Therefore, the VOC results in these samples may be more reflective of groundwater conditions rather than soil conditions. When not considering these samples, the area of VOC occurrence in soil decreases

to approximately 80 feet south of the building (GP-5) to approximately 60 feet east of the source area (SB10-4).

VOCs were detected in this area groundwater at concentrations above their screening levels both on-Site and off-Site to the east in the neighboring residential area. Monitoring wells associated with the eastern source area include MW10-1, MW-135, MW-146, MW-150, MW-151, MW-152, MW-156, MW-157, MW-159, MW-162, MW-163, MW-164, MW-200, MW-201, and MW-301. Figures 15a to 15c present historical dissolved TCE, cis-1,2-DCE, and VC data in the shallow zone of the upper sand unit, respectively. As seen in these figures, groundwater plumes have been identified for cis-1,2-DCE and TCE. VC is absent in the eastern source area. As expected, the TCE plume is greater in magnitude and extent than its daughter product cis-1,2-DCE. Dissolved TCE concentrations exceeding residential cleanup goals extend approximately 350 feet east of the Site to Luctt Avenue and about 150 feet south of the Site near the end of Olin Avenue. The cis-1,2-DCE groundwater plume is smaller in magnitude and extent. Cis-1,2-DCE concentrations exceeding residential screening levels extend approximately 200 feet east and approximately 130 south of the Site.

An anomalous area of dissolved TCE occurrence was noted at the location of MW-163 and KB-1 (Figure 15a). Lower TCE concentrations were noted at locations surrounding MW-163 and KB-1, including to the north at MW-162, to the west at KB-12 through 15 and MW-150, to the south at MW-156, and to the east at KB-11. Based on the observed groundwater flow patterns and surrounding groundwater data, the cause of the elevated TCE at this location is uncertain and seemingly not associated with the Site.

Vertically, the dissolved VOCs are contained within the shallow zone of the upper sand unit. TCE has not been detected in the deep zone of the upper sand unit anywhere at the Site. Cis-1,2-DCE has not been detected in the deep zone of the upper sand unit in the eastern source area. Cis-1,2-DCE occurrence in the deep zone is depicted on Figure 16a. As previously mentioned, VC is absent in the eastern source area.

Historical groundwater data for push-probes, shallow monitoring wells, and deep monitoring wells are presented in Tables 8a through 8c, 9a through 9c, and 10a through 10c. Historical TCE, cis-1,2-DCE, and VC data for shallow groundwater are depicted on Figures 15a through 15c. Groundwater data in the eastern source area are available for some wells from as early as

1992. As can be seen from the historical and current data, there is no apparent upward trend in TCE concentrations indicating that the plume is stable or decreasing.

4.5.2 Western Source Area

VOCs were detected in subsurface soils of the western source area at concentrations above screening levels (Figure 14a). VOCs were generally present in trace concentrations or absent in surface soils of this area. It should be noted that VOCs are not present in soil or groundwater beneath the building at concentrations above screening levels (Figures 14a and 15a through 15c).

VOCs

VOCs were detected in groundwater both on-Site and off-Site to the south across Little Eagle Creek at concentrations exceeding screening levels. As discussed in a later section, off-Site VOC occurrence is, at least in part, attributable to off-Site sources. As with the eastern source area, the primary VOC of concern include TCE, cis-1,2-DCE, and VC. On-Site, the VOC occurrence is limited to the shallow zone of upper sand unit. Off-Site to the south, the VOC occurrence appears to be greatest within the deep zone of the upper sand unit. VOCs have not been detected in the lower silty clay unit at concentrations above screening levels.

TCE was detected in on-Site groundwater at concentrations above screening levels only in the shallow zone of the upper sand unit (Figure 15a). The TCE daughter products cis-1,2-DCE and VC were the only VOCs detected in the upper sand unit off-Site to the south. Cis-1,2-DCE was detected off-Site in both the shallow and deep zones of the upper sand unit at concentrations above screening levels (Figures 15b and 16a). In the shallow zone, cis-1,2-DCE was intermittently present and no identifiable dissolved plume is apparent. The greatest off-Site concentrations of cis-1,2-DCE occur in the central portion of the Michigan Meadows apartment property (MW-166). Much lower concentrations were detected in MW-165 located on the Michigan Meadows apartment property just south of Little Eagle Creek and upgradient of MW-166 (Figure 15a). Cis-1,2-DCE is less extensive in the deep zone as shown in Figure 16a. VC occurrence in the shallow zone is similar to that of the cis-1,2-DCE (Figure 15c). The VC occurrence is more extensive in the deep zone than in the shallow zone (Figure 16b).

Historical groundwater data for push-probe soil borings, shallow monitoring wells, and deep monitoring wells are presented in Tables 8a through 8c, 9a through 9c, and 10a through 10c. Historical TCE, cis-1,2-DCE, and VC data from the shallow zone are also depicted in Figures

15a through 15c, respectively. On-Site groundwater data in the western source area are available in some wells as early as 1992. As can be seen in the time series data, there is no apparent upward trend in TCE concentrations. Maximum detected TCE concentrations were observed during historical sampling events, indicating that the plume is stable or decreasing. More limited historical groundwater data are available for off-Site areas to the south.

PAHs

PAHs occurrence was originally discovered in the western source area in association with the buried waste material. Since PAHs were added to the list of COPCs, subsequent soil sampling was performed across the Site to investigate PAH occurrence and provide data for closure. Although associated with buried waste material, surface and subsurface soil data show that PAHs are generally not detected in the western area. PAHs were detected at concentrations below screening levels in surface soils in the eastern portion of the Site (Figure 13b). It is thought that the PAH occurrence is due to historic general land use. As with VOCs, the PAH occurrence in soil was mitigated during the buried waste removal action. One isolated PAH occurrence was observed in the buried waste beneath the building at a concentration below non-residential and residential screening levels (Figure 14c).

In groundwater, PAHs were randomly detected at concentrations below screening levels. In the shallow zone, PAHs in off-Site wells MW-162 (located east of the Site on Olin Avenue) and MW-169 (located south of the Site on Cossell Road) were detected at concentrations above residential screening levels, but below non-residential screening levels (Figure 15d). Based on the locations of the PAH detections, they do not appear to be related to the Site. Similarly, in the deep zone, PAHs have been detected at concentrations above residential screening levels, but below non-residential screening levels in on-Site well MW-200 and off-Site well MW-167D located along Michigan Street to the south (Figure 16c). As with the shallow zone, the PAH occurrence in the lower zone is random and limited in extent.

<u>Metals</u>

Metals occurrence in Site soils is related to the buried waste in the western source area (Figures 6c and 7c). In this area, only lead was detected in surface soil at concentrations above screening levels. Cadmium, and lead were detected in subsurface soils at concentrations above screening levels in this area. With the exception of the excavation bottom sample (A1) and the buried waste remaining beneath the building, the buried waste removal action conducted in the western

source area has mitigated metals occurrence in soil. Locations where surface soil containing lead concentrations above screening levels were removed during remedial activities are indicated on Figure 20 and 23.

In groundwater, only total chromium and total lead have been detected. Total chromium has not been detected in either on-Site or off-Site groundwater at concentrations above screening levels. Total lead has been detected at concentrations nominally above screening levels. Its occurrence is erratic and does not indicate the presence of a definable groundwater plume. The total lead concentrations from early sampling events appear typical of groundwater samples where This is supported by a comparison of the historical total lead turbidity is a concern. concentrations. Initial sampling for total metals was performed using standard purge and sample techniques with bailers. This technique tends to result in more turbid samples. As required by VRP guidance, none of the groundwater samples collected at the Site have been filtered. The most recent sampling event was performed using low-flow sampling methods. As can be seen in Tables 9c and 10c, total lead levels significantly decreased using low-flow sampling. Based on the most recent data, total lead concentrations slightly exceed screening levels in only five wells, four of which are located off-Site to the south. Only on-Site well MW-200 (with a lead concentration of 36.6 ug/l), which is not located in the western source area, contained total lead above its screening level of 15 ug/L. Based on the most recent sampling data, total metals in groundwater are not a concern at the Site.

4.6 ECOLOGICAL ASSESSMENT

A screening-level ecological risk assessment (SLERA) was completed for the Site and is presented in Attachment 16. A brief discussion of the SLERA and its conclusions is presented below.

4.6.1 Environmental Setting

Review of the National Wetlands Inventory (NWI) Map for the Site and surrounding area shows the nearest potential wetland is approximately one mile south-southwest of the Site along the north side of Eagle Creek. Review of the Flood Insurance Rate Map (FIRM) for the City of Indianapolis, Indiana shows the Site and immediately surrounding properties are within the 100-year floodplain.

The Indiana Department of Natural Resources (IDNR) and the USFWS provided information on rare, threatened, or endangered species or habitats at or near the Site. The IDNR reported no listings for such species in the Site area. USFWS reported that the Site is within the range of the Federally endangered Indiana bat (*Myotis sodalis*) and the Federally threatened bald eagle (*Haliaeetus leucocephalus*). However, no suitable habitat exists at the Site for either of these species.

Based on this information, no ecological habitats were identified on-Site. Two potential ecological habitats identified near the Site are (1) Little Eagle Creek adjacent to the southern property boundary, and (2) Eagle Creek located approximately 0.75 miles south of the Site.

4.6.2 Data Evaluation and Identification of COPCs

FDGTI collected surface water samples at three locations (Figure 8) in Little Eagle Creek in October 1996 and February 1997 and analyzed them for VOCs. The October 1996 sampling event represented low-flow conditions and the February 1997 sampling event represented high-flow conditions. The only VOC detected was cis-1,2-DCE during the low-flow sampling event (Table 11a). The maximum detected concentration was 17 ug/L. Further evaluation and use of the FDGTI data was not possible because complete information on the data generation was not available to KERAMIDA for validation.

In March of 2000, KERAMIDA collected samples of surface water and sediment from five locations in Little Eagle Creek (Figure 8). No VOCs were detected in the surface water or sediment samples (Tables 11a and 11b and Figure 17). The detection limits for the surface water and sediment samples were evaluated by comparison with ecological toxicity-based benchmarks (screening levels) obtained from USEPA and other federal and state sources. Tables 11a and 11b list the surface water and sediment data, respectively, along with their ecological screening levels.

In surface water, the detection limits for acrolein, acrylonitrile, bromodichloromethane, dichlorodifluoromethane, trans-1,4-dichloro-2-butene, 1,1-dichloroethane, cis-1,3-dichloropropene, trans-1,3-dichloropropene, ethyl methacrylate, trichlorofluoromethane, and vinyl chloride were elevated above their respective screening levels. Vinyl chloride and 1,1-dichloroethane are the only two of these compounds that may be Site-related and have the potential to be present at concentrations below their reported detection limits.

In sediment, the detection limits for acrolein, acrylonitrile, 1,2-dibromo-3-chloropropane, hexachlorobutadiene, and vinyl chloride were elevated above their respective screening levels. Vinyl chloride is the only one of these compounds that is Site-related and has the potential to be present at concentrations below the reported detection limit.

4.6.3 Conclusions

Based on this information, no COPCs were identified for Little Eagle Creek or Eagle Creek. To address those undetected analytes which had detection limits that exceeded their respective screening levels, additional surface water and sediment sampling and analysis are planned.

5.0 RISK ASSESSMENT

A Site-specific Human Health Risk Assessment (HHRA) and Screening Level Ecological Risk Assessment (SLERA) were completed to evaluate potential risks to human health and the environment. The objectives of the HHRA and SLERA were to (1) evaluate potential adverse human health effects and ecological effects from Site-related contaminants, and (2) develop Site-specific closure levels for COPCs that present excess risks and hazards. The results of the HHRA and SLERA were then used to develop remediation goals and procedures for the Site. The HHRA and SLERA are included as Attachments 15 and 16, respectively. A summary of the HHRA and SLERA results are presented below.

Results of the HHRA indicate that the levels of COPCs in on-Site surface soil, subsurface soil, and groundwater are not expected to present any excess risks to on-Site industrial workers or construction/utility workers through incidental soil ingestion or inhalation of vapors or particulates. There is no on-Site exposure pathway to groundwater for drinking purposes because no wells are located on-Site, potable water is provided by municipal water supply, and the Site is located in a No Well Zone which restricts the installation of water supply wells.

Potential off-Site commercial/industrial workers and residential receptors may be exposed to unacceptable risks and hazards if current groundwater COPC concentrations remain the same and potable use of groundwater occurs in downgradient areas.

No analytes were detected in surface water or sediment samples of Little Eagle Creek. Therefore, no risks or hazards are expected for recreational users or ecological receptors in this habitat. In addition, groundwater fate and transport modeling shows that no Site-related COPCs will reach Eagle Creek. The issue of PAHs, metals, and non-detectable VOCs will be addressed by confirmation sampling to ensure that if any of these chemicals are detected in Little Eagle Creek, they indeed are below human and ecological screening levels.

6.0 CLEANUP CRITERIA SELECTION

Based on the results of the HHRA, current COPC concentrations in on-Site subsurface soil and groundwater do not require remediation to prevent excess risks to receptors. However, as a conservative measure, Genuine Parts chose to remediate those media to the VRP Tier II Default Non-Residential Cleanup Goals. The area to be included in the VRP Covenant-Not-To-Sue is shown on Figure 2. The list of COPCs is presented in Attachment 14. The selected cleanup criteria for the media-specific COPCs are discussed in the following sections.

6.1 SURFACE SOIL

Based on the results of the surface soil screening, remediation will not be required.

6.2 SUBSURFACE SOIL

Based on the results of the human health subsurface soil screening, the following areas and COC required remediation:

- The western source area associated with former parts degreasing operations and waste burial activities located in the western portion of the Site.
- COC to be addressed include TCE, cis-1,2-DCE, 1,2-Trimethylbenzene, lead, and cadmium.

The proposed cleanup criteria for these COC in these areas are the Indiana VRP Tier II Non-Residential Cleanup Goals for subsurface soil.

As previously stated in Section 4.3.2, the identified buried waste was removed and properly disposed between April and July of 2001. Confirmation soil sampling conducted during the buried waste removal action verified that all source material in the identified burial areas was removed. Buried debris and VOC and lead impacted soils in the lead soil "hot spot" were

excavated and properly disposed of. Confirmation soil sampling verified that lead impacted soils in the lead soil "hot spot" were remediated to concentrations below its respective Tier II Non-Residential and Residential Cleanup Goals. SVE is currently being performed in the VOC soil "hot spot" to further reduce residual VOC concentrations.

6.3 GROUNDWATER

The following on-Site areas and COPCs will be remediated:

- The eastern source area thought to be associated with apparent former solvent operations located near the southeastern corner of the building.
- The western source area associated with former parts degreasing operations and waste burial activities located in the western portion of the Site.
- COPCs to be addressed include cis-1,2-DCE, TCE, and VC.

The proposed cleanup criteria for these COPCs in these areas are the VRP Tier II Non-Residential Cleanup Goals, which are listed in Tables 9a through 9c.

Based on the results of the HHRA, the following off-Site groundwater COPCs will require remediation:

- 1,1-DCE
- cis-1,2-DCE
- TCE
- VC

However, the groundwater COPCs are likely contributed by off-Site sources as well as the Site and, therefore, the risks from off-Site groundwater COPCs are only partially attributable to on-Site source areas. Identification and delineation of off-Site source areas would be required to evaluate the relative contributions of on- and off-Site sources to the groundwater COPC concentrations and resulting risks. Should COPC concentrations and groundwater use remain the same, the VRP Tier II Residential and Non-Residential Cleanup Goals would be appropriate for residents and commercial/industrial exposure, respectively. If exposure to groundwater COPCs is prevented, alternative cleanup goals should be identified for groundwater. If

groundwater COPC concentrations decline, then potential risks and hazards should be reevaluated to determine if they have decreased to below the target levels.

Off-Site VOC occurrence in groundwater will be addressed through an exposure prevention remedy, which is discussed in detail in Section 8.2.6.

6.4 SURFACE WATER

Based on the results of the surface water screening, remediation will not be required for surface water.

6.5 SEDIMENT

Based on the results of the sediment screening, remediation will not be required for sediment.

7.0 STATEMENT OF WORK

7.1 OBJECTIVES OF REMEDIAL ACTION

The objectives of the remedial action are to remove known buried wastes such as automotive parts and drums of discarded floor sweeps-/automotive scraps and to address residual VOC, PAH, and targeted metals occurrence in soil and groundwater where present at concentrations at or above the identified cleanup goals.

Previous investigations identified two separate source areas of Site COPCs. These source areas are located in the western and southeastern portions of the Site. VOC groundwater contamination from these two source areas extends southward off the property in the direction of groundwater flow. Apparent off-Site sources of VOCs in groundwater have also been identified.

A full-scale air sparge/soil vapor extraction (AS/SVE) System was constructed to aggressively reduce the two separate VOC groundwater plumes on Site and to mitigate the off-Site migration. The AS/SVE System consists of air sparging and vapor extraction wells. Additionally, phytoremediation was incorporated into the system and is comprised of two rows of hybrid poplar trees lining the entire southern property boundary to further mitigate off-Site COPC migration.

Off-Site VOC occurrence in groundwater will be addressed through an exposure prevention remedy, which is discussed in Section 8.2.6.

7.2 SUMMARY

- A. Major tasks to be completed or that have already been completed to address soil contamination are as follows:
 - Removal of buried drums containing scrap automotive parts and other waste materials located in the western source area.
 - Removal of additional VOC, PAH, or metals-impacted soil encountered during the implementation of the above tasks. This may include soils excavated during the above tasks and/or soils determined to contain VOCs, PAHs, and metals, above the selected remediation goals based on confirmation sampling.
 - In-place remediation of the TCE "hot spot" by SVE. Following the reduction of TCE concentrations in soil, the identified lead-impacted fill materials in the "hot spot." A majority of the "hot spot" has been removed and properly disposed of.
- B. Major tasks to be completed or that have been implemented to address groundwater contamination are as follows:
 - Installation and operation of an AS/SVE system in the eastern and western source areas.
 - Planting of hybrid poplar trees along the southern (downgradient) property boundary.
 - Plume stability monitoring to confirm that the identified dissolved VOC plumes are not expanding.

7.3 SITE SAFETY PLAN

A detailed Site health and safety plan has been prepared for the remedial activities. The plan conforms to OSHA standards as outlined in 29 CFR 1910.120. A copy of the plan is provided as Attachment 8. All personnel and visitors involved in remediation activities at the Site, will be briefed on the plan's contents, given the opportunity to read the plan and required to sign the plan and date their signature.

7.4 QUALITY ASSURANCE PROJECT PLAN

KERAMIDA has prepared a detailed quality assurance project plan for the remediation effort. The plan meets all of the criteria described in the VRP Resource Guide (IDEM, 1996). A copy of the plan is provided as Attachment 7.

8.0 REMEDIATION PLAN

8.1 BURIED WASTE REMOVAL ACTION

Historic buried waste was discovered at the Site in May 2000 while installing groundwater remediation system piping. During that time, stained soils, decayed drums, and miscellaneous small metallic debris (automotive parts) were encountered during trenching activities in the southwest corner of the Site in the vicinity of remediation system vent well SVE-8 (Figure 21). Contaminated soil with varying amounts of debris was also encountered in the vicinity of SVE-3 and in several soil/vent well boreholes.

The discovery of the buried waste prompted an investigation of the entire property (excluding areas under roof) to locate other potential buried waste areas. The investigation included a geophysical survey and exploratory trenching (Figure 19). In response to the findings, a removal action was designed and implemented to mitigate the buried waste concern. The remedial action consisted of waste sampling, analysis, and determination; waste excavation, transport, and disposal; confirmatory soil sampling; and Site restoration (Figure 20). The waste removal action spanned from discovery in May 2000 to completion of the action in July 2001.

During removal, the debris was noted to extend beneath the western portion of the facility building. A Geoprobe® survey was conducted to characterize the fill material and delineate its extent. The remaining buried waste extends approximately 100 feet to the east beneath the building and is limited to the north and south by the footprint of the building. The approximate extent of waste materials beneath the building is illustrated on Figure 20. Based on the Geoprobe® survey, the buried waste typically begins one to feet bgs and terminates at depths ranging from 3 to 5 feet bgs. A thin layer of parts was noted between 13 and 13.5 feet bgs in KB-i4. In general, the buried waste beneath the building consists of a similar mixture of small metal parts and other debris encountered. The only exception is a one-foot thick layer of

powdery material observed in KB-i6, which contained no parts or other debris in the entire boring. Given an average thickness of approximately three feet and an area of approximately 7,500 square feet, the total volume of material remaining beneath the building may approach approximately 830 cubic yards. Since removal of the buried waste beneath the building is infeasible, a deed restriction will be used to prevent exposure to the remaining waste beneath the building.

The Phase II Report provides an in depth discussion and extensive documentation on the buried waste removal action summary above. As part of this RWP, the following information regarding the buried waste removal action is presented:

- Surface and subsurface soil confirmation sampling results are presented in Tables 12a through 12c and 13a through 13c, respectively.
- Surface and subsurface soil confirmation sample locations and analytical results are depicted on Figures 13a through 13c and 14a through 14d, respectively.
- Geophysical anomalies and test trench locations are depicted on Figure 19.
- Removal action excavation areas are depicted on Figure 20.

8.2 GROUNDWATER REMEDIATION PLAN

8.2.1 Development and Screening of Remedial Alternatives for Source Areas

The initial development and screening of alternatives is based on information provided in the September 19, 1997 "Draft Remedial Investigation Report" prepared by FDGTI for General Motors found in Attachment 5 of KERAMIDA's "Phase II Investigation Report" dated March 29, 2002. "The objective of the development and screening of technologies is to identify, screen, and develop alternatives for removal, containment, treatment and/or other remediation of impacted areas at the Site."

The Investigation identified two separate VOC groundwater plumes associated with two separate source areas. These source areas are located in the western and southeastern portions of the Site. VOC groundwater contamination from these two source areas extends southward off the property in the direction of groundwater flow. Alternatives for the remediation of these two source areas of groundwater contamination were screened by using matrices for evaluating remediation strategies as documented in the June 3, 1997 "Draft Feasibility Report" prepared by

FDGTI for General Motors found in Attachment 5 of KERAMIDA's "Phase II Investigation Report" dated March 29, 2002. "These matrices were based upon applicability (technical feasibility), protection of public health and the environment, cost and treatment time, and administrative considerations."

Site-specific information, such as chemical type and characteristics; Site medium; chemical concentrations distribution throughout medium; etc. is needed to screen remediation technologies and identify potential corrective measure alternatives. Advantages such as mobility reduction, destruction, volume reduction, etc. and disadvantage such as emerging or inappropriate technology, non-permitable, etc. are used to evaluate the applicability of a technology to remediate impacted areas at any specific Site. Exposure to Site workers, visitors, and surrounding population along with potential community impacts (real or perceived) is evaluated. And capital costs, operating costs, treatment time and administrative considerations are also evaluated. Each of the areas evaluated is rated and given a numerical value to the technologies relative applicability to the specific Site.

8.2.2 Remedial Technologies Screened for Source Areas

Various active remedial technologies in combination with each other were considered for source area treatment of groundwater including:

- Soil Vapor Extraction combined with Air Sparging,
- Groundwater Pump & Treat, and
- Ozone Injection

The two most viable options for groundwater remediation in the "Draft Feasibility Report" include soil vapor extraction (SVE) combined with air sparging (AS) and groundwater pump & treat. In addition, reductive dechlorination was considered for mitigation of the anomalous TCE occurrence east of Olin Avenue.

8.2.2.1 Soil Vapor Extraction

Soil vapor extraction is a process of removing volatile contaminants from the subsurface by using a vacuum to create airflow through the subsurface soil. The continual flow of air results in volatilization of contaminants either from adsorbed phase or free phase and ultimate removal by the vacuum system. SVE also is used in conjunction with air sparging to remove vapors from

the subsurface after they are volatilized from the groundwater by the sparging system. The effectiveness of vapor extraction is limited by the volatility of the contaminants and the air permeability of the soil. Clay-rich soils typically have low air permeability and are not good candidates for SVE unless it is enhanced by soil heating. Sandy soils such as those present beneath the fill material and surficial silty clay at the Site are well suited for SVE. However, the treatment would be limited to the unsaturated zone.

This technology has been widely used and is well accepted for unsaturated zone treatment. However, it may require treatment of extracted vapors to eliminate issues of discharge of potential pollutants to the atmosphere. This alternative would require pilot testing to evaluate its feasibility at the Site and to obtain information for a full-scale design.

8.2.2.2 Air Sparging

Air sparging is a widely used and relatively well-accepted remedial technology consisting of the injection of air below the groundwater table to volatilize contaminants. The technology is applicable to dissolved contaminants as well as free phase. The process involves the creation of air bubbles moving through the soil in the saturated zone. As the bubbles move upward, contaminants are volatilized into the air bubble and moved into the unsaturated zone. The contaminants can then be removed by soil vapor extraction or in some cases allowed to naturally migrate to the surface. In cases where contaminants can degrade aerobically, AS can enhance natural attenuation by providing oxygen (biosparging). AS systems can also be used to deliver nutrients to the groundwater. AS systems are suitable for relatively homogeneous medium to high permeability soil. Sandy soils such as those present beneath the fill material at the Site are well suited for AS.

This technology is well suited for the saturated zone at the subject Site and is a proven, widely-accepted technology. This alternative would require pilot testing to evaluate its feasibility at the Site and to obtain information for a full-scale design.

8.2.2.3 Groundwater Pump and Treat

Groundwater pump and treat consists of physical removal of contaminated water from the ground, treatment of the water to remove the contaminants (by air stripping, carbon adsorption, or other physical/chemical methods) and discharge of the treated water to a sewer or stream. This can be an effective method for controlling plume migration, especially in permeable soils.

However, the removal rate of contaminants is limited by the process of adsorption and desorption of contaminants to/from soil particles and diffusion into the groundwater. Thus, the efficiency in contaminant mass removal is generally poor, resulting in extended remediation times (tens of years). Also, these systems require considerable maintenance and generate waste streams.

Although this technology is widely used, it is more applicable as a dissolved plume control technology than a remediation technology. Proper design requires pilot testing to determine aquifer characteristics. Due to the extensive time frame to achieve remediation goals and the associated O&M costs, including permit issues for discharge of the treated groundwater, this technology is not well suited for the Site.

8.2.3 Treatability Investigation for Source Areas

Based on the screening of technologies and the potential applicability of SVE/AS, FDGTI conducted pilot scale tests in the western and southeastern source areas of the Site on February 24, 1997 to:

- Evaluate the technical feasibility of using the SVE/AS technology at the Site.
- Determine the radius of influence for single-well SVE test.
- Determine the radius of influence for single-well AS test.

8.2.3.1 Soil Vapor Extraction

The SVE only pilot scale test in the southeastern area of the Site determined that a vacuum radius of influence (ROI) of approximately 28 feet can be achieved by the application of a vacuum of 14 inches of water. This equates to a design flow rate of 25 standard cubic feet per minute (scfm) per foot of well screen at 14 inches of water. Short-term SVE tests were also conducted in western area of the Site. A vacuum of 45 inches of water at a flow rate of 25 scfm per foot of well screen was observed. The results from the western area of the Site suggested that adequate airflow rates can be achieved except in the extreme northwest portion due to greater amounts of clay and silt in the vadose zone. Descriptions of the pilot test set-up, methods used and monitoring parameters can be found in the "Draft Feasibility Study Report".

8.2.3.2 Air Sparging

The AS pilot scale test was conducted in the southeastern area of the Site. An ROI of 20 feet was possible at an airflow rate of 9.5 scfm at an injection rate of 4.5 pounds per square inch (psi). Descriptions of the pilot test set-up, methods used and monitoring parameters can be found in the "Draft Feasibility Study Report".

8.2.4 Selected Remedial Technology for Source Areas

Based on the findings of the technology screening, the technologies appear to cost approximately the same to design and install. However, permitting, operation, and treatment costs would be higher for the groundwater pump & treat approach. The estimated cleanup time of the groundwater pump & treat system is approximately 10 years and will require water management. The expected cleanup time for the SVE/AS system is 3 to 5 years and will require minimal water management comparatively. Results of the SVE/AS pilot-scale test indicate this is a feasible technology for the Site.

Based upon the evaluation of remedial technologies, SVE/AS was selected as the most appropriate technology for source remediation based on expected operation and maintenance costs and expected duration of cleanup. In addition, reductive dechlorination was selected as the most appropriate technology for mitigation of the anomalous TCE occurrence east of Olin Avenue.

8.2.5 Remediation System for Source Areas

The Investigations identified two separate VOC groundwater plumes associated with two separate source areas. These source areas are located in the western and eastern portions of the Site. VOC groundwater contamination from these two source areas extends southward off the property in the direction of groundwater flow. Various remedial technologies were screened and SVE/AS proved to be the most applicable technology and based on expected operation and maintenance costs and expected duration of cleanup is the selected remedial technology.

Based upon the results the pilot-scale testing, a full-scale SVE/AS design was completed. In addition to the SVE/AS system, a phytoremediation system consisting of hybrid poplar trees was included into the design as a buffer line along the entire southern property line to intercept groundwater as it flows off-Site. Phytoremediation is the use of various plants to remediate environmental media. Phytoremediation has been shown to be effective in remediation of soil,

sediment, groundwater, and surface water, and on organic and inorganic contaminants. Phytoremediation applications cleanup contaminated media by degrading, extracting, containing, and/or immobilizing the contaminants.

The full-scale system design described above was then constructed. The SVE/AS portion of the remediation system consists of a total of 44 air sparging and 27 vapor extraction wells, while the Phytoremediation portion of the remediation system is comprised of two rows of hybrid poplar trees lining the entire southern property boundary. A layout of the remediation system can be found on Figure 21.

8.2.5.1 Remediation System Design

The SVE/AS portion of the remediation system was separated into a two western treatment units and one southeastern treatment unit. Each treatment unit is serviced by separate equipment, with the equipment for both of the western treatment units housed in one enclosure/trailer and the equipment for eastern treatment unit housed in a separate enclosure/trailer. The northern unit of the western SVE/AS system is comprised of 7 vapor extraction wells and 10 air sparging wells and the southern unit of the western SVE/AS system is comprised of 10 vapor extraction wells and 19 air sparging wells. The southeastern treatment unit is comprised of 10 vapor extraction wells and 15 air sparging wells.

The number and layout of vapor extraction and air sparging wells for each treatment unit were determined by using the ROI results (28 feet and 20 feet, respectively) from the pilot scale testing and plotting them over the source areas. The placement of the remedial equipment and enclosures was determined by local zoning set backs, Site owner requirements and the need to locate them as close as possible to the wells. Piping from these wells to their respective remedial equipment and enclosures were then plotted making sure to minimize piping needs. Using this layout and the results of the pilot scale testing, piping and equipment sizing calculations were prepared for each treatment area. Pressure losses for various vapor extraction pipe sizes were calculated using the total expected airflow, piping friction losses and pipe lengths. The most appropriate pipe size was then chosen and the vapor extraction blowers and air compressors were sized based upon acceptable piping losses just calculated and the required vacuum or pressure determined from the pilot scale testing results. A copy of the design calculations can be found as Attachment 17.

The Phytoremediation portion of the remediation system is comprised of two staggered rows of hybrid poplar trees, on 5-foot centers, lining the entire southern property boundary. Spacing between the rows is a minimum of 8 to 10 feet. An irrigation system, designed by the selected irrigation installation company, runs the entire tree line. Copies of the phytoremediation papers used for design purposes can be found as Attachment 18.

A Construction Manual along with Construction Manual Drawings were developed based upon the proposed SVE/AS and Phytoremediation systems layout and associated design calculations. The Construction Manual details the contract terms/bidding requirements, general requirements, Site work, concrete work, mechanical work, electrical work and permitting. The Construction Manual Drawings include a Yard Plan, Trench Section Details, Well and Wellhead Details and Resurface & Equipment Pad Details. A copy of the Construction Manual Drawings can be found as Attachment 19.

The design of the soil vapor extraction and air sparging wells is based upon standard practice and Site constraints. For the vapor extraction wells, the middle third of the screen for these wells must be set near the normal water table level of approximately 11-13 feet bgs (bgs). Water table elevation data can be found in Tables 3a through 3c. Therefore, the soil vapor extraction wells were screened from 5 to 15 feet bgs. For the air sparging wells, the maximum depths were based upon the depth to the clay layer underlying the saturated, sand soils in which the impacted groundwater to be remediated resides. In the northwestern portion of the western source area, the clay layer begins at approximately 30 feet bgs and in the southwestern portion of the western source area, the clay begins at approximately 20 feet bgs. The clay begins at approximately 25 feet bgs in the southeastern source area. Therefore, the air sparging wells were installed down to the clay layer depths as described above. Geologic cross-section data can be found on Figures 11a through 11g.

The Remedial Equipment and Enclosure Specifications were also developed based upon the proposed SVE/AS system layout and associated design calculations. The Remedial Equipment and Enclosure Specifications detail contract terms/bidding requirements, general requirements, Site-specific information, operational and performance standards, power and code requirements, permitting and bid checklist. The specifications also include a copy of the Construction Manual Drawings and a Remedial System Process Flow Diagram. A copy of the Remedial Equipment

and Enclosure Specifications (w/o Construction Manual Drawings) can be found as Attachment 20.

8.2.5.2 Remediation System Permitting and Disposal

There are no Federal or State permits required for the installation and implementation of the remediation system except for the State of Indiana Industrialized Building Design Release for the enclosures housing the remedial equipment. Various City of Indianapolis permits are required, including an Improvement Location, Stormwater, Right of Way Cut, and Water Connection. Permitting was delegated to the selected construction and electrical contractors and equipment vendor in accordance with the documents discussed in Section 8.2.5.1.

The only waste to be generated at the Site is condensate water from the knock-out tanks associated with each of the vapor extraction blowers. A 400-gallon poly tank is used to store these liquids and Liquid Waste Removal, Inc. of Indianapolis, Indiana has been contracted to remove and haul the condensate water for treatment/disposal at Perma-Fix located in Dayton, Ohio.

8.2.5.3 Remediation System Implementation

The remediation system was constructed in phases in accordance with the design documents and drawings discussed in Section 8.2.5.1. The installation of the soil vapor extraction wells and subsurface piping in the western source area of the Site began in May of 2000. Due to Site owner issues, construction was halted. In September of 2000 the installation of the phytoremediation portion of the remediation system and the remainder of the soil vapor extraction wells and subsurface piping was completed. The installation of the air sparging points was completed in November and December of 2000. The remedial equipment was constructed and then delivered to the Site in March of 2001. Due to the excavation work conducted in the western portion of the Site in April through May and July of 2001, as discussed in Section 7.1, final connections to the equipment including electrical and telephone were not completed until July of 2001. On July 13, 2001, the SVE/AS portion of the remediation system was initiated.

A layout of the remediation system can be found on Figure 21. Copies of the soil vapor extraction and air sparging boring and well construction logs can be found as Attachment 21. A copy of the NEPCCO – Groundwater Remediation System O&M Manual which contains

engineering drawings, component lists, start-up procedures and operation and maintenance manuals for each major piece of equipment can be found as Attachment 22.

8.2.6 Off-Site Groundwater Remediation Evaluation

Remedial alternatives were evaluated for groundwater in two off-Site areas: (1) east of the Site and Olin Avenue and (2) south of the Site across Little Eagle Creek.

8.2.6.1 South Off-Site Area

The Site is located in Marion County Health Department (MCHD) No Well Zone (NWZ) Area 2. No Well Zones indicate areas where the presence of known groundwater contamination affects the approval of water supplies by the MCHD. The MCHD is responsible for insuring that safe potable water is supplied to residential and non-residential premises. Section 10-401 of Chapter 10 (Minimum Standards for Residential Property and Housing) and Section 19-402 [sic] of Chapter 19 (Minimum Standards for Non-Residential Premises) of the Code of the Health and Hospital Corporation of Marion County provide for approval of residential and non-residential water supplies, respectively, by the Health Officer. Section 18-102 of Chapter 18 (Water Wells and Water Supply Systems) requires that if the Health Officer determines that water from a private well presents a chemical, biological, or radiological threat to those served by the supply, and if a public water main becomes available within 100 feet of any property line, that the property connect to the public water supply and the well to be abandoned.

A public water supply is available in the area of the Site and most residential and non-residential premises are connected to it, including the Michigan Meadows Apartments and nearby single-family residences. One private water well has been identified in the area and is located at 709 North Olin Avenue. The MCHD has sampled the well a number of times and has not identified contamination (Attachment 23). Section 18-201 states that permits approved by the Health Officer are required for the installation of any water well not serving a municipality or public utility. According to Pam Theivenow of the MCHD, permits are denied in a NWZ due to the presence of contaminated groundwater. Private wells located in a NWZ for industrial purposes may be approved by the Health Officer, if it can be proven that they will not create a hazard to human health (Section 18-201).

The MCHD began building a groundwater quality database and identifying NWZs in the late 1990s. A NWZ delineated by the MCHD requires approval from the City-County Council prior

to designation. Currently seven NWZs have been designated. According to Pam Theivenow, the NWZ ordinance has no expiration date associated with it. She also stated that revocation of the NWZ ordinance would require approval of the City-County Council. A copy of the NWZ maps and the pertinent chapters of the Code of the Health and Hospital Corporation of Marion County related to water supply are included in Attachment 3.

In conclusion, the NWZ ordinance provides a measure of control to prevent exposure of off-Site residents and workers to contaminated groundwater. To ensure that future exposure to the groundwater does not occur, the Applicant will establish further institutional control(s) acceptable to IDEM that will prohibit the installation of potable water supply wells.

8.2.6.2 East Off-Site Area

A small anomalous area of TCE occurrence was noted in groundwater to the east of the Site across Olin Avenue. As a protective measure, this area will be remediated by reductive dechlorination to health protective levels. The proposed remediation method for this area consists of reductive dechlorination through addition of a biodegradable carbon source to stimulate biological activity. A bench-scale "microcosm" test was completed to determine appropriate dosing concentrations. A description of the reductive dechlorination process, the well installation, microcosm study, and results is presented in the following sections.

Reductive Dechlorination Process

Reductive dechlorination is a process of enhancing the naturally occurring processes of degradation. Natural reductive dechlorination takes place in most subsurface systems due to the presence of microbes which breakdown the contaminants to harmless constituents. The goal of reductive chlorination is to enhance the natural processes by the addition of a food source for the microbes. This food source usually consists of a substance with a high carbon content such as molasses, corn syrup, etc. Reductive dechlorination is ideally suited for Sites where chlorinated solvents are present and where field indications suggest that natural attenuation is already taking place.

The benefits of this technology are the low cost compared to other remedial technologies and the lack of any extracted waste to be disposed of. The drawbacks of this technology are generally a longer time frame to achieve a "clean" Site and that over-application of the substrate can lead to

conditions becoming too reductive. In this instance, the system will stall and no enhancement of dechlorination will take place.

Field Activities

Two injection wells were installed in the proposed treatment area: one near existing well MW-163, and one in the right of way on the west side of Olin Avenue, on the centerline of Walnut Street (IW-1 and IW-2, respectively). The well locations are depicted on Figure 7. The boring logs and well construction diagrams are presented in Attachments 9 and 10. A third well (MW-173) was installed approximately 30 feet southeast of well MW-163 for monitoring the treatment. The well was constructed similar to the injection wells. The boring log and well construction diagram for this well are also provided in Attachments 9 and 10. During advancement of the borings, soil samples were collected from two foot intervals in the saturated sandy loam. These soil samples were submitted for analysis of VOCs to determine the most contaminated strata in the sandy loam. These results are presented on Table 7a. During advancement of the boring for IW-1, one split-spoon sample was collected from the saturated zone for use in the microcosm study described below. A portion of the split-spoon sample was analyzed for TCE.

Upon completion of the wells, ten gallons of groundwater were purged from IW-1 for use in the microcosm study described below. The new wells and existing wells in the area (MW-150, MW-151, MW-157, MW-164, MW-173, IW-1, IW-2, and MW-10-1) were gauged for water level, and monitored for pH, temperature, and oxidation-reduction potential (ORP). In addition, groundwater samples from each of these wells were submitted to Pace Analytical Services, Inc. of Indianapolis for analysis of TCE and total organic carbon (TOC). The results are presented in Table 9a and Figure 15a.

Microcosm Study

To confirm that the proposed remedial technology will be effective and to determine injection concentrations, a microcosm study was undertaken. The microcosm study was performed by KERAMIDA. All laboratory analyses described below were conducted by Pace Analytical Services, Inc. (PACE) of Indianapolis, Indiana.

Corn Syrup Testing

The first step of the microcosm study was to determine the TOC content of the Marsh® Lite Corn Syrup (corn syrup) to be used in the microcosm study. It was estimated on the basis of 32 grams of carbohydrates per 30 milliliters (mL) of corn syrup that the TOC concentration was 4.37×10^5 milligrams per liter (mg/L). This estimate was also based on the assumption that the carbohydrates consisted of the sugars fructose and glucose and that these sugars are 41% carbon by weight.

Three concentrations of corn syrup in distilled water were prepared and submitted to PACE for analysis of TOC. The results indicated that the actual TOC concentration of the corn syrup is 3.04×10^5 mg/L. This value was used for the corn syrup TOC concentration in all subsequent bench test calculations. The laboratory analytical packages are provided in Attachment 11.

Bench Testing

Soil from the saturated zone at boring location IW-1 (11-13' bgs) was mixed with purge water from the same monitoring well and the same depth to create four slurries of approximately 10% solids by weight. Each slurry consisted of 0.22 kilograms (kg) of Site soil and 2 kg (2 L) of Site groundwater. One slurry was used as a control sample with no corn syrup added (RV0). The others were spiked with corn syrup to create aqueous TOC concentrations of approximately 100 mg/L (RV1), 300 mg/L (RV2), and 1000 mg/L (RV3).

The four slurries were placed in 2.4 L glass reaction vessels. After the addition of the corn syrup, a sample was collected from each vessel and analyzed by PACE for TCE to establish the baseline concentration for each reaction vessel. Then each vessel's headspace was purged with nitrogen, mimicking the subsurface redox condition, and capped with a rubber stopper. A polyethylene tube was place through each rubber stopper and attached to a Tedlar bag. This allowed for the production and collection of any off-gases without compromising the seal of the vessel. All four vessels were then incubated at the average groundwater temperature measured at the Site (approximately 14.1 °C). Samples of the liquid were collected for analysis at 7, 14, 21, and 28 days after initiation of the study. The samples were analyzed by PACE for TCE. In addition, at 28 days aqueous samples from each reaction vessel were submitted for TCE analysis. The results of the study will be used to select the most appropriate concentration of corn syrup to be injected into the subsurface.

Results and Conclusions

The analytical testing results are presented in Table 14 and Figure 22a for reference. In addition, the laboratory analytical reports are presented in Attachment 11.

The results of the baseline aqueous TCE analysis for each reaction vessel indicate that the concentration of TCE in the aqueous phase of the slurry is proportional to the concentration of corn syrup added to the reaction vessel (Figure 22b). This is likely due to the fact that the dissolved corn syrup increases the solubility of TCE in the aqueous phase. TCE is a chlorinated hydrocarbon compound that does not dissolve readily in water. The concentrations observed in the aqueous phase at IW-1 indicate that there is a reasonably high concentration of TCE adhered to the soil. The addition of corn syrup to the aqueous phase of each reaction vessel makes the aqueous phase more favorable for hydrocarbon solution. Therefore additional TCE is dissolved into the aqueous phase.

The results of the weekly aqueous TCE analyses indicate that an asymptotic decrease in TCE concentration occurred during the study. At the conclusion of the study, all four reaction vessels contained approximately 400 ug/L TCE in the aqueous phase. At this point, the system has apparently reached stasis. The most likely explanation is that the rate of microbial degradation of TCE is essentially equal to the rate of solubilization of TCE. This gives the appearance of a stalled system, as the concentration of TCE in the aqueous phase is no longer decreasing. Destruction of TCE is, in fact, continuing to take place in the aqueous phase. However, the results of that destruction can only be observed in the soil TCE concentrations. Table 14 and Figure 22c provide the TCE concentration in soil at the completion of the study. All three concentrations of added corn syrup exhibit decreases in TCE concentrations in soil below that of the control sample (RV0). Once the soil TCE is lowered significantly, the aqueous concentration of TCE will begin to decrease again.

KERAMIDA will complete a field application of corn syrup with a target TOC concentration of 100 mg/L. This concentration was chosen to optimize the degradation of TCE while not overdosing the aquifer system. Overdosing the aquifer system will lower the pH and redox potential conditions to levels detrimental to biodegradation. A system of two permanent injection wells (IW-1 and IW-2) and ten temporary injection points emplaced by a Geoprobe percussive rig will be used to deliver sufficient corn syrup to achieve the target concentration

across the entire treatment area. This application will be followed up with monthly monitoring of key wells and subsequent applications, if necessary.

8.3 VOC AND LEAD SOIL "HOT SPOT" REMEDIATION

8.3.1 Remediation Screening Alternatives

Reduction and/or removal of TCE impacted soil concentrations to below VRP Tier II Non-Residential Closure Goals and removal of Lead impacted soil concentrations to below these same Closure Goals is the objective for the "hot spot" area to reduce potential risk to human health and the environment. A preliminary evaluation of remedial alternatives for source reduction and removal resulted in selection of the following remedial technologies for further evaluation. A brief description of each technology and an evaluation of its applicability/feasibility for the subject Site are provided in the following sections.

- Soil Vapor Extraction (SVE)
- Excavation and Off-Site Disposal

8.3.1.1 Soil Vapor Extraction

SVE is a process of removing volatile contaminants from the subsurface by using a vacuum to create airflow through the subsurface soil. SVE is not an option to remediate lead impacted soils. The continual flow of air results in volatilization of contaminants either from adsorbed phase or free phase and ultimate removal by the vacuum system. The effectiveness of vapor extraction is limited by the volatility of the contaminants and the air permeability of the soil. Clay-rich soils typically have low air permeability and are not good candidates for SVE unless it is enhanced by soil heating. Sandy soils such as those present beneath and in the fill materials near the "hot spot" area are well suited for SVE. This technology has been widely used and is well accepted for unsaturated zone treatment. However, it may require treatment of extracted vapors to eliminate issues of discharge of potential pollutants to the atmosphere.

8.3.1.2 Excavation and Off-Site Disposal

Excavation and disposal of the impacted soils is a common and accepted remedial alternative. However, there are several issues and limitations to consider for this Site. These include future liability as a potentially responsibly party (PRP) at the hazardous waste disposal facility, logistics and safety concerns related to excavation of hazardous materials. Based on the analytical results

from past and current investigations, the "hot spot" soil, if excavated, would be a hazardous waste.

8.3.2 Selected Remedial Technology

The use of SVE would only remediate VOC contaminants found in the "hot spot" area. Soils impacted with the detected VOC concentrations would require incineration prior to disposal, based upon current waste characterization results found in Attachment 12 and discussions with disposal facilities. The cost of disposal would be approximately \$500 per ton. However, if the VOC concentrations can be reduced to levels where the lead can be treated, the disposal cost would be reduced to approximately \$200 per ton. These figures do not include excavation and oversight costs.

Treatment of the VOC and Lead impacted "hot spot' soils would be completed by using a combination of SVE to treat the VOC-impacted soils and subsequent Excavation/Disposal of Lead impacted soils. The TCE treatment area as depicted on the Figure 23, would be remediated to concentrations below the VRP Tier II Non-Residential Closure Goals by the use of the existing SVE portion of the remediation system. Once the VOC soil concentrations were below the Closure Goals, as determined by soil sampling and analysis, the lead impacted soils would be excavated and disposed of. The lead removal area is also depicted on Figure 23.

8.3.3 Remediation System

During the period of August 25 and September 18, 2003, KERAMIDA expanded the current remediation system to treat the VOC portion of the TCE and Lead Soil "Hot Spot" area, located along the western boundary of the Site (Figure 21).

In accordance with portions of the Construction Manual (Attachment 19), KERAMIDA and its subcontractors installed four (4) sets of nested SVE wells and connected these SVE wells via subsurface piping to previously installed subsurface piping that is connected to the Southwestern Remediation System. A fifth set of SVE wells was installed in the center of the "Hot Spot"; however, on August 27, 2003, buried debris was found within the lead impacted soils portion of the "Hot Spot" area, where this set was located. The fifth set of nested wells was destroyed during removal of the buried debris. The locations of the "Hot Spot" and the nested wells are depicted on Figure 23.

The debris found was similar to the buried debris discovered in May 2000 that was excavated and disposed in July 2001 (See Section 8.1 for complete details). Small amounts of debris also were found surrounding SVE-31 shallow (s) and deep (d). To remove the debris around SVE-31s/d, these wells were removed and were subsequently reinstalled approximately two (2) feet to the north. The fifth set of SVE wells (centered in the lead impacted soils), along with approximately 78 cubic yards of buried debris and lead impacted soils were excavated and properly disposed of as hazardous waste during this time. Waste Disposal Documentation is located in Attachment 12. Soils were excavated to the groundwater table located at approximately 11-feet bgs. The excavation was backfilled and compacted with clay-rich fill material.

Test trenches were also dug to approximately four (4) feet bgs around the newly installed nested SVE wells in an attempt to locate any further buried debris. No additional debris was discovered during these trenching activities. Approximately 33 cubic yards of additional trenching spoils, generated during the installation of subsurface piping and test trenching, were properly disposed. See Attachment 6 for waste disposal documentation. See Figure 21 for layout of the SVE wells and subsurface piping installed back to existing subsurface piping of the Southwestern Remediation System.

Four (4) soil confirmation samples were collected from the sidewalls of the excavation approximately six (6) feet bgs. Bottom samples were not collected because groundwater was encountered at 11 feet bgs. Sample collection and analysis was performed according to the KERAMIDA SOPs presented in Attachment 6. The samples were analyzed for VOCs by EPA Method 8260B and total lead by EPA Method 6010 at data quality level (DQL) IV. See Figure 23 for the location of the soil excavation and confirmation sampling locations. Attachment 10 contains the SVE well construction diagrams, and Attachment 12 contains the waste disposal manifests.

Results of the confirmation sampling are provided in Tables 15 and 16, and depicted on Figures 14a and 14d. All four sidewall samples contained detectable lead concentrations below its respective Tier II Non-Residential and Residential Cleanup Goals. VOC analytical results indicate that the sample taken from the south sidewall (HS-SW) contained concentrations of TCE and DCE above their respective Tier II Non-Residential Cleanup Goals. Additionally the west wall sample (HS-WW) contained DCE at a concentration above its Tier II Non-Residential

Cleanup Goal. The north and east sidewall samples contained VOC concentrations below their respective Tier II Non-Residential Cleanup Goals. SVE is currently being performed in the "Hot Spot" area to further reduce residual VOC concentrations. Remedial progress will be monitored during routine operation and maintenance activities and annual soil sampling as proposed in the RWP. In accordance with Section 6.3.3 of the Remediation Work Plan, the first round of annual soil sampling will be completed in September 2004 to coincide with one (1) year of operation and maintenance (O&M) of the expanded Southwestern Remediation System.

8.4 MONITORING/CONFIRMATION SAMPLING PLAN

8.4.1 Remediation System Monitoring Plan

The goal is to assure continued operation of the remediation system and to maintain it such that it operates in the most efficient manner possible. Remediation system monitoring results will be documented in quarterly reports.

8.4.1.1 SVE/AS Portion

Weekly Site visits will be made to monitor remediation system operation, to collect system performance indicators and to conduct routine maintenance. Monthly effluent vapor samples will be collected from each soil vapor extraction blower and sent in for laboratory analysis for VOCs. An additional effluent vapor sample from each soil vapor extraction blower will be collected and analyzed for permanent gases on a quarterly basis. Annually two random soil borings will be advanced in the VOC and lead impacted soil "hot spot" area for the collection of soil samples to be analyzed for VOCs. See Section 9.0 Operation and Maintenance Plan and the Quality Assurance Project Plan found as Attachment 7 for complete details.

8.4.1.2 Phytoremediation

Monthly inspections will be conducted during the growing season and quarterly inspections will be conducted throughout the dormant period of each year. The growing season for the Site is estimated to be from April through October. If any trees show signs of distress, disease, or other abnormalities, remedial steps will be taken.

Leaf tissue and transpiration gas sampling and analysis will be completed from three randomly selected trees in June and September to coincide with the early and late stages of the growing season. The samples will be submitted for laboratory analysis for VOCs. The results of the

tissue and gas sampling and analysis will be used to evaluate the physical and chemical mechanisms at work in the remediation system, the potential for risk to ecological receptors from exposure to COPC-containing plant tissues, and potential COPC concentrations released to ambient air in the remediation area. See Section 9.0 Operation and Maintenance Plan for complete details.

8.4.1.3 Selective On-Site Groundwater Monitoring

On-Site groundwater monitoring will be completed quarterly from the following six (6) existing monitoring wells, MW-10-1, 132, 133R, 147, 148, 150 and 153 to evaluate remedial progress. Samples will be analyzed in the field for pH, dissolved oxygen, temperature and redox potential. Samples collected for laboratory analysis will be analyzed for VOCs at DQO Level II. See the Quality Assurance Project Plan found as Attachment 7 for complete details. See Figure 24 for locations of monitoring wells.

If the analytical results in all six (6) monitoring wells from four (4) consecutive quarterly groundwater sampling events displays asymptotic behavior near or drops below the IDEM VRP Tier II Non-Residential Closure Goals for VOCs, the remediation system will be shut down and selective monitoring will end.

8.4.2 On-Site Groundwater Monitoring Plan

On-Site groundwater monitoring will be completed annually from the following eleven (11) existing monitoring wells, MW-10-1R, 132, 133R, 135, 145, 146, 148, 150, 152, 153 and 154. Monitoring will be performed on an annual basis beginning one month following the approval of the RWP by the IDEM. Samples will be analyzed in the field for pH, dissolved oxygen, temperature and redox potential. Samples collected for laboratory analysis will be analyzed for VOCs, PAHs, Cadmium, Chromium and Lead at DQO Level II. See the Quality Assurance Project Plan found as Attachment 7 for complete details. On-Site groundwater monitoring results will be documented in quarterly reports. See Figure 24 for locations of monitoring wells.

Once the remediation system has been shut down as discussed in Section 8.4.1.3, sampling will change from annual to quarterly and samples will be analyzed at a DQO Level IV for groundwater confirmation purposes. Once the analytical results in all ten (10) monitoring wells from four (4) consecutive quarterly groundwater sampling events displays asymptotic behavior near or drops below the IDEM VRP Tier II Non-Residential Closure Goals for VOCs, PAHs,

Cadmium, Chromium and Lead, on-Site remedial objectives will be attained and the IDEM will be petitioned for on-Site closure.

8.4.3 Plume Stability Groundwater Monitoring Plan

Plume stability groundwater monitoring will be completed from the following seventeen (17) existing monitoring wells MW-10-1R, 132, 146, 148, 150, 151, 152, 153, 156, 157, 160, 161, 164, 165S, 166S, 167S and 169S. Monitoring well pairs 169S&D, 170S&D, 171S&D and 172S&D will not be monitored due to the presence of off-Site source(s) that would affect the evaluation of plume stability. Wells MW-165D, MW-166D, MW-167D, and MW-169D will also not be monitored for this reason. Monitoring will be performed on a quarterly basis beginning one month following the approval of the RWP by the IDEM. Samples will be analyzed in the field for pH, dissolved oxygen, temperature and redox potential. Samples collected for laboratory analysis will be analyzed for VOCs at DQO Level IV. See the Quality Assurance Project Plan found as Attachment 7 for complete details. Plume stability groundwater monitoring results will be documented in quarterly reports. See Figure 24 for locations of monitoring wells.

Once plume stability is achieved and the analytical results in all twenty-nine (29) monitoring wells display asymptotic behavior near or drop below the IDEM VRP Tier II Residential Closure Goals for VOCs, off-Site remedial objectives will be attained and the IDEM will be petitioned for off-Site closure.

8.5 DATA MANAGEMENT

A combined Operation & Maintenance (O&M) and Groundwater Monitoring Report will be prepared to document the operation, maintenance and monitoring of the remediation system and any groundwater monitoring performed on a quarterly basis.

The remediation system portion of the quarterly reports will include a summary of SVE/AS operation and maintenance over the quarter, the results of any vapor sampling data, estimates for VOC mass removal, Phytoremediation operation, maintenance and monitoring, results of annual VOC and Lead soil hot spot sampling and any other information pertinent to the remediation project. See Section 9.0 Operation and Maintenance Plan for complete details of data to be collected.

The groundwater monitoring portion of the quarterly reports will include a description of the monitoring and sampling procedures, deviations from the standard procedures, if any, tables and figures documenting the analytical results and groundwater elevation/flow, discussion of the results, and recommendations for any changes for future monitoring events. See the Quality Assurance Project Plan found as Attachment 7 for complete details of data to be collected.

9.0 OPERATION AND MAINTENANCE PLAN

The goal is to assure continued operation of the remediation system and to maintain it such that it operates in the most efficient manner possible. A copy of the NEPCCO – Groundwater Remediation System O&M Manual which contains Engineering drawings, component lists, start-up procedures and operation and maintenance manuals for each major piece of equipment can be found as Attachment 22.

9.1 NORMAL OPERATION & MAINTENANCE

Various logs and forms have been developed to document operation, maintenance and monitoring of the remediation system. Copies of these logs and forms can be found in Attachment 24.

9.1.1 Operation and Monitoring Tasks and Schedule

The following tasks will be conducted during O&M visits:

- Weekly SVE operational measurements.
- Weekly AS operational measurements.
- Monthly collection of effluent vapor samples for VOC analysis.
- Monthly readjustment of the applied vacuum and pressures at the vapor extraction and air sparging wells, if needed to maximize efficiency.
- Quarterly collection of effluent vapor samples for permanent gases analysis.
- Quarterly observed, applied, and induced vacuum and pressures groundwater monthly, groundwater dissolved oxygen (DO) and groundwater redox potential levels from drains, vapor extraction wells, air sparging points, and monitoring points within and around the treatment area.

- Quarterly collection of groundwater samples for field parameter and VOC analysis from monitoring wells, MW-10-1R, 132, 133R, 147A, 148, 150 and 153.
- Semi-annual collection of leaf tissue and transpiration gas sampling and analysis will be completed from three randomly selected trees in June and September to coincide with the early and late stages of the growing season.
- Annual collection of soil samples for field parameter and VOC analysis at two random locations within the treatment area.

See the Quality Assurance Project Plan found as Attachment 7 for complete details on the quarterly groundwater, annual soil, and semi-annual tree monitoring events.

9.1.2 Maintenance Tasks and Inspection Schedule

9.1.2.1 Phytoremediation

Monthly inspections will be conducted during the growing season and quarterly inspections will be conducted throughout the dormant period of each year. The growing season for the Site is estimated to be from April through October. If any trees show signs of distress, disease, or other abnormalities, remedial steps will be taken which may include, but are not necessarily limited to: tree replacement, mulching, pest control, fertilizing, pruning, watering, and reseeding. Irrigation will also be conducted, as needed, based on the findings of the inspections.

In accordance with the agreement between Genuine Parts Company and IPL, the following will be completed for the phytoremediation system within the IPL easement in the southwestern portion of the Site:

- The maximum height of the poplar trees will be maintained to below 15 feet. If at any time this height is exceeded, the particular tree(s) will be trimmed.
- The poplar trees will be cut down in the spring of 2004 to within 2 feet of the ground surface and thereafter every three (3) years.
- The poplar trees on the IPL easement will be removed upon the completion of the project.
- If IPL has to contact KERAMIDA to maintain the poplar trees more than once, then IPL has the right to cut down the poplar trees.

9.1.2.2 Other

Task/Instrumentation	Frequency
Valves/fittings - check for damage including cracks and leaks	Monthly
Gauges – check for damage and re-zero	Monthly
Indicator / alarm lights – check for and replace burnt bulbs	Monthly
Separator – check for sediments, damage, and clean as necessary	Monthly
Air filters – check filter condition and clean / change as needed.	Monthly
SVE blower – check line voltage, motor amps & grease fittings	Weekly
SVE blower – drain and replace oil	Every 1,000 hours
Air Compressors – check line voltage & motor amps	Weekly
Air Compressors –replace oil filter	Every 1,500 hours
Air Compressors – drain and replace oil	Every 4,000 hours

9.1.3 Optimum Operating Conditions

EASTERN SYSTEM

Parameter	Operating Condition
Soil Vapor Extraction Wells	10-15-inches of H ₂ O vacuum/well
·	25-foot Radius of Influence
Soil Vapor Extraction Blower	35-40-inches of H ₂ O vacuum @ inlet (60-inches of H ₂ O
	vacuum @ blower)
	200-250 CFM of influent air flow
AS Wells	5psi @ 5 CFM
	20-foot Radius of Influence
Air Compressor	100psi @ outlet (25-30psi @ regulator)
	75 CFM of effluent air flow @ outlet

NORTHWEST SYSTEM

Parameter	Operating Condition
Soil Vapor Extraction Wells	20-25-inches of H ₂ O vacuum/well
	25-foot Radius of Influence
Soil Vapor Extraction Blower	30-35-inches of H ₂ O vacuum @ inlet (80-inches of H ₂ O
	vacuum @ blower)
	200-250 CFM of influent air flow
AS Wells	5psi @ 5 CFM
	20-foot Radius of Influence
Air Compressor	100psi @ outlet (25-30psi @ regulator)
	75 CFM of effluent air flow @ outlet

SOUTHWEST SYSTEM

Parameter	Operating Condition
Soil Vapor Extraction Wells	15-20-inches of H ₂ O vacuum/well
	25-foot Radius of Influence
Soil Vapor Extraction Blower	35-40-inches of H ₂ O vacuum @ inlet (80-inches of H ₂ O
1	vacuum (a) blower)
	200-250 CFM of influent air flow
AS Wells	5psi @ 5 CFM
	20-foot Radius of Influence
Air Compressor	100psi @ outlet (25-30psi @ regulator)
	75 CFM of effluent air flow @ outlet

9.1.4 Waste Management

During normal O&M activities certain liquid wastes will be generated. Liquid wastes will be generated by the draining of condensate from the vapor extraction blower knock-outs and during groundwater sampling. A 400-gallon poly tank will be used to store these liquids and Liquid Waste Removal, Inc. of Indianapolis, Indiana has been contracted to remove and haul the condensate and groundwater generated for treatment/disposal at Perma-Fix located in Dayton, Ohio per applicable Federal, State, and Local regulations.

9.1.5 Health & Safety

All work will be completed in accordance with the Site-specific "Health & Safety Plan". A copy of this plan is located at the Site and can be found as Attachment 8.

9.2 POTENTIAL OPERATING PROBLEMS

Most typical operational problems arise from devices such as air/water separators (knock-outs), blowers, air compressors and air particulate filters. The following sections discuss these and other sources for potential operational problems, and common fixes for these problems.

9.2.1 Potential Sources of Operational Problems

• Air/water separators separate water and soil vapors from each other. Sediments often accumulate on the bottoms of the separators as the water is waiting for transfer. This can clog the discharge line from the separator backing up water and causing a high water alarm, which shuts down the system.

- Motor starters for blowers and air compressors can burn out, or trip due to thermal overload (high amperage), and/or high temperature.
- Blower and air compressors can lose lubrication causing undue wear to the motors.
- Indicator and alarm light bulbs can burn out.

9.2.2 Common Remedies of Operational Problems

The actual sources of problems and failures associated with the remediation system can and will be identified during scheduled maintenance and inspection tasks.

- Air/Water Separators will be inspected monthly and cleaned as required to stop the accumulation of sediments on the bottoms of the separators.
- Blower and air compressor voltages, motor amperages and temperatures will be checked weekly to make sure these motors are operating within motor nameplate values.
- Blower motors will be lubricated with grease weekly and their oil changed every 1,000 hours.
- Air compressor motor oil will be changed every 4,000 hours.
- Air particulate filters for the blowers and air compressors will be inspected monthly and cleaned as required.
- Indicator and alarm lights will be checked (push-to-test type) monthly and burnt lights will be replaced as required.

9.3 CONTINGENCY OPERATION & MAINTENANCE PLAN

A contingency O&M Plan has been prepared and may be implemented, if necessary, to minimize system down time due to any sudden or non-sudden breakdown of the remedial equipment or the treatment process.

9.3.1 Alternative Operational Procedures

None; the remediation systems will automatically shut down or will be manually shut down if discharge limits are exceeded.

9.3.2 Notification Procedures

The following procedures will be followed in case of system operational problems.

- Any system operational problems will be first reported to the project manager via the telephone.
- Once the project manager has been notified, the reporting technician and project manager will discuss the specific problems and possible remedies. The problems will be fixed while on-Site by the technician, if possible.
- The O&M Log and Maintenance Sheets found in Attachment 24 will be used to document problems, any work performed to fix the problems, or possible actions needed to fix them during the next visit.
- If problems cannot be fixed by technician while on-Site, the project manager will procure the needed materials to remedy the problems, and schedule the next Site visit as soon as possible.
- Problems that result in system(s) down time greater than one week will be reported to Genuine Parts Company. And any problems that result in the need for system modifications for the treatment process will be reported to Genuine Parts Company and to the IDEM VRP Representative. See Section 9.3.3 for Remediation System Modification Procedures.

9.3.3 Remediation System Modification Procedures

The following procedures will be followed prior to the start of any remediation system modifications to the treatment process. Remediation system modifications include any and all additions and/or deletions of treatment equipment.

- System modification needs will be reported to Genuine Parts Company.
- A proposal including reasoning for any remediation system modifications and associated costs will be prepared and submitted to Genuine Parts Company.
- Once the proposal is reviewed and any comments are discussed and incorporated, a letter will be prepared and submitted to the IDEM VRP Representative discussing the need for any remediation system modifications.
- Once the IDEM VRP Representative has reviewed the letter and any comments are discussed by both IDEM and Genuine Parts Company, any comments will be incorporated, as appropriate, and remediation system modifications will begin.

10.0 COMMUNITY RELATIONS

This section presents Genuine Part's plan for keeping the IDEM and the general public informed regarding the remedial work at the Former General Motors Corporation Allison Gas Turbine Division Plant 10. The plan provides a basis for communicating the appropriate information to the IDEM and the public.

10.1 AFFECTED PROPERTY OWNERS

Findings of investigations completed at the Site indicate the presence of VOCs in groundwater off-Site to the southeast and south across Little Eagle Creek. A list of addresses where VOCs have been identified in groundwater is presented below. VOC occurrence in groundwater southeast of the Site is markedly different than that detected to the south. To the southeast, VOC occurrence is limited in the upper sand unit and TCE is a major contaminant. South of Little Eagle Creek, TCE is absent from the groundwater and detected VOC concentrations are greatest in the deep zone of the upper sand unit. The characteristics of dissolved VOC occurrence in this area differ greatly from the eastern source area of the Site and indicate the presence of an off-Site source or sources. Soil data collected during the investigations also confirm the presence of an off-Site source(s) off-Site to the south.

A potable water supply well is present at 709 Olin Avenue. Probable potable water supply wells are also located southeast of the Site at 601 and 605 Luett Avenue and south of the Site at 3908 and 3910 Cossell Road. All five of the locations are residential properties. Water well construction records were only publicly available for the two wells present on Cossell Road. The wells have intake screen intervals at approximately 45 to 50 feet below ground surface (bgs). This depth coincides with the deep zone of the upper sand unit.

Groundwater analytical data indicate that detectable VOC concentrations are likely present in the deep zone of the sand unit in the area of the water supply wells located on Cossell Road. As previously discussed, VOCs present in the deep zone off-Site to the south appear to be from a source or sources not related to the Site. Groundwater data also indicate that detectable VOC concentrations may be present in the upper sand unit in the area of the probable water supply wells located on Luett Avenue. If present, the construction of these wells is not known. Data collected from deep monitoring wells located on-Site and southeast of the Site, indicate VOC occurrence is limited to shallow groundwater in this area. Groundwater data collected by KERAMIDA, as well as water supply well data collected by the Marion County Health Department, indicate the known supply well located at 709 Olin Avenue is not impacted by VOCs.

All properties indicated on the list below should be notified that VOC contaminated groundwater may be present beneath their properties. They should be informed of the findings of the Risk Assessment and counseled on the potential implications of the contamination. The presence, construction, and use of the possible water supply wells identified on Luett Avenue and Cossell Road should be confirmed with the property owners. Findings of the discussion with the property owners should be used to evaluate the need to sample these wells, if present.

601 Olin Avenue	717 Olin Avenue	654 Luett Avenue
609 Olin Avenue	721 Olin Avenue	702 Luett Avenue
611 Olin Avenue	602 Luett Avenue	700 Luett Avenue
623 Olin Avenue	606 Luett Avenue	708 Luett Avenue
621 Olin Avenue	612 Luett Avenue	712 Luett Avenue
625 Olin Avenue	614 Luett Avenue	716 Luett Avenue
627 Olin Avenue	618 Luett Avenue	722 Luett Avenue
629 Olin Avenue	620 Luett Avenue	3910 Cossell Rd.
637 Olin Avenue	628 Luett Avenue	3908 Cossell Rd.
639 Olin Avenue	630 Luett Avenue	3839 Michigan St.
701 Olin Avenue	636 Luett Avenue	3835 Michigan St.
707 Olin Avenue	642 Luett Avenue	3817 Michigan St.
709 Olin Avenue	646 Luett Avenue	3811 Michigan St.
715 Olin Avenue	650 Luett Avenue	3800 Michigan St.
1, 10 0 1111		

10.2 COMMUNITY ORGANIZATIONS

Community organizations were not located within the area search.

10.3 SAMPLE NOTICE

A notice similar to the following will be mailed via certified mail to the above-referenced property owners, organizations and institutions.

This notice is being provided to inform you of the presence of a Site in your neighborhood that has been accepted into Indiana Department of Environmental Management's (IDEM) Voluntary Remediation Program. This notice is a requirement of a Community Relations Plan that has been developed by the Applicant and is a component of the Remediation Work Plan for the Site that is available for review at the repository listed below. The Community Relations Plan includes provisions for notifying

all neighboring property owners and occupants, neighborhood organizations and other local entities. In addition, the Community Relations Plan may require the applicant to post an informational sign at the subject property. For additional information about the Community Relations Plan and the Remediation Work Plan, please review the documents in the repository or contact the IDEM Project Manager at (317) 234-0971.

The proposed project entails the remediation of volatile organic compounds (VOCs) and lead in soil and VOCs in groundwater at the former General Motors Corporation, Allison Gas Turbine Division, Plant 10 Facility. The sources of the VOCs and lead have been removed. The remediation will primarily focus on the treatment of residual VOC in soil and groundwater using soil vapor extraction and air sparging technologies. A lead "hot spot" in soil will be excavated and removed from the Site. Phytoremediation will be conducted along the downgradient property boundary to further mitigate dissolved contaminant occurrence.

The IDEM will accept public comments regarding the Remediation Work Plan for a period of 30 days after the mailing of this notice. Comments are to be provided in writing and must be received by the IDEM Project Manager prior to the end of the 30 day period. Comments should be sent to:

William Wieringa

VRP Project #6991004

Indiana Department of Environmental Management
Office of Land Quality
P.O. Box 6015

Indianapolis, Indiana 46202-6015

A copy of the Remediation Work Plan is available for public review at the Indianapolis Marion County Library, at the Haughville Branch, located at 2121 West Michigan Street, Indianapolis, IN 46222.

10.4 LOCAL GOVERNMENT UNITS

The only governmental units within 1 mile are the City of Indianapolis and the Marion County. The IDEM will be responsible for providing notifications to these entities.

City of Indianapolis, Mayor Bart Peterson, 2501 City-County Building, 200 E. Washington Street, Indianapolis, Indiana 46204.

Marion County Health Department, Rosemarie Neimeyer Hansell, Environmental Health Specialist, 3838 North Rural St., Suite 520, Indianapolis, IN 46205.

10.5 LOCAL NEWSPAPERS

The local newspaper in the area is the Indianapolis Star, 307 N. Pennsylvania St., Indianapolis, IN 46204.

10.6 PUBLIC REPOSITORY

The public repository selected for public display of the Remediation Work Plan is the Indianapolis Marion County Library, at the Haughville Branch, located at 3815 West Michigan Street, Indianapolis, IN 46222.

• The VRP applicant will make a reasonable effort to notify all potentially affected parties via certified mail.

11.0 COMPLETION OF REMEDIAL ACTION

A Completion Report detailing the remediation system and confirmation sampling will be submitted upon completion of the remediation to the cleanup criteria. Future use of the Site will is expected to remain as a Non-Residential property.

A Completion Report detailing plume stability monitoring will be submitted upon completion of the remediation to the cleanup criteria.

12.0 SCHEDULE

The schedule for the project generally consists of continued O&M and quarterly selective and annual/quarterly confirmation on-Site groundwater monitoring and quarterly plume stability

groundwater monitoring. The projected work schedule is described in general terms below. A detailed schedule is provided on Figure 25.

It is estimated that the groundwater in the source area will be remediated to the proposed Closure Goals in 3 to 4 years, the VOC impacted soil "hot spot' area in 2 to 3 years, and the anomalous VOC area to the east in 1 to 2 years. Quarterly selective and annual on-Site groundwater monitoring will take place over 3 to 4 years. Once quarterly selective on-Site groundwater sampling ends when the remediation system is shut down as described in Section 7.4.1.3, annual on-Site groundwater monitoring will be conducted quarterly for confirmation purposes. Quarterly plume stability groundwater monitoring will take place over 7 years.

The resulting schedule indicates that the estimated time for achieving closure for the Site is just over seven years.

13.0 COST ESTIMATE

Total costs to date are approximately \$2,500,000. This total includes investigation and groundwater sampling events, geophysical surveys, buried waste debris excavation, transportation and disposal activities, remediation system installation, start-up and one year of O&M, Phase II Reporting, VRP Application, and this RWP. Remaining remediation and monitoring costs as described in Section 10.0 are approximately \$950,000.

14.0 USE OF REPORT

This report has been prepared for the exclusive use of the Client and persons or organizations to which the Client wishes to make this report available. This report and the findings, conclusions and recommendations contained herein shall not, in whole or in part, be disseminated or conveyed to any other party, or used by or relicd upon by any other party, without the prior written consent of KERAMIDA.

15.0 LIMITATIONS

This RWP was prepared in accordance with KERAMIDA contractual guidelines set for subsurface investigations. KERAMIDA's professional opinions contained herein are based upon the sampling conducted by KERAMIDA personnel during the subsurface investigation. No other warranty is given or implied by this report.

16.0 REFERENCES

- American Society of Testing Materials (ASTM). 1995. Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites (RBCA) E1739-95. November 1995.
- Bouwer, H. and R.C. Rice. 1976. A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers with Completely or Partially Penetrating Wells. Water Resources Research Vol. 12 pp. 423-428.
- Cowherd, C., G. Muleski, P. Englehart, and D. Gillette. 1985. Rapid Assessment of Exposure to Particulate Emissions from Surface Contamination (EPA/600/8-85/002). Prepared for EPA Office of Health and Environmental Assessment.
- Dragun, James, Ph.D. and Chaisson, Andrew. 1991. *Elements in North American Soils*. Hazardous Materials Control Resources Institute. Greenbelt, Maryland. Copyright 1991.
- Engineering Science, Inc. 1992. Phase I Information Review Report for General Motors Corporation Allison Gas Turbine Division. July.
- Engineering Science, Inc. 1993. Phase II Site Assessment Final Report for General Motors

 Corporation Allison Gas Turbine Division. November 19.
- Flood Insurance Rate Map.
- Fluor Daniel GTI. 1997a. Feasibility Study Report for General Motors-Allison Gas Turbine Plant 10. June 3.
- Fluor Daniel GTI. 1997b. Remedial Investigation Report for General Motors-Allison Plant 10. September 19.
- Gary, H., C. Ault, and S. Keller. 1987. Bedrock Geologic Map of Indiana. Miscellaneous Map 48. Indiana Geological Survey.
- Gray, H., N.K. Bleuer, J.R. Hill, and J.A. Lineback. 1979. Regional Geologic Map No. 1, Indianapolis Sheet Part B. Indiana Geological Survey.
- Gray, Henry. 1989. Quaternary Geologic Map of Indiana. Miscellaneous Map 49. Indiana Geological Survey.
- Harrison, W. 1963. *Geology of Marion County, Indiana*. Indiana Geological Survey. Bulletin No. 28, 78 p.
- Hartke, E.J., Ault, C.H., Austin, G.S., Becker, L.E., Bleuer, N.K., Herring, W.C., and Moore, M.C. 1980. Geology for Environmental Planning in Marino County, Indiana. Bloomington, Ind., Indiana Geological Survey Special Report 19, 53 p..

- Hoggatt, R.E. 1975. Drainage Areas of Indiana Streams, U.S. Geological Survey, 231 p.
- Indiana Department of Environmental Management (IDEM). 1996. Resource Guide. Voluntary Cleanup Program.
- IDEM. 1994. Calculation of Tier II Cleanup Goals Based on Human Health Evaluation.
- IDEM. 2001. "RISC Technical and Users Guides." February 15.
- Indiana Register. 1993. 327 IAC 2-1-6. Minimum Surface Water Quality Standards. November 19.
- KERAMIDA Environmental, Inc. 2002. Phase II Investigation Report, Former General Motors Corporation, Allison Gas Turbine Division Plant 10, 700 North Olin Avenue, Indianapolis, Indiana. March 29.
- Lyman, W.J., W.F. Reehl, D.H. Rosenblatt. 1993. *Handbook of Chemical Property Estimation Methods*. American Chemical Society. Third Printing.
- Meyer, W., J. Reussow, and D. Gillies. 1975. Availability of Ground Water in Marion County, Indiana. Open-File Report 75.312. United States Department of the Interior, Geological Survey.
- Mundell and Associates. 2003. Air Quality Investigation Report, Michigan Meadows Apartment and Michigan Plaza Shopping Center, 3800-3823 West Michigan Street, Indianapolis Indiana. June 9.
- National Oceanic and Atmospheric Administration. 1989. Local Climatological Data, Annual Summary with Comparative Data, Indianapolis, Indiana. United States Department of Commerce.
- National Wetlands Inventory Map.
- O'Brien & Gere Engineers, Inc. 1994. Buyer Environmental Assessment. Allison Engine Company, Inc. May.
- Off-Site Groundwater VRP Tier II Residential Cleanup Goals for Groundwater.
- Off-Site Sediment VRP Residential Cleanup Goals for Surface Soil.
- Off-Site Subsurface Soil VRP Tier II Residential Cleanup Goals for Subsurface Soil.
- Off-Site Surface Water VRP Tier II Residential Cleanup Goals for Groundwater.
- On-site Groundwater VRP Tier II Non-Residential Cleanup Goals for Groundwater.
- On-Site Subsurface Soil VRP Tier II Non-Residential Cleanup Goals for Subsurface Soil.

- On-Site Surface Soil VRP Tier II Non-Residential Cleanup Goals for Surface Soil.
- Stewart, James A. 1983. Low-Flow Characteristics of Indiana Streams. U.S. Geological Survey Open File Report 82-1007.
- Sturm, R.H. and R.H. Gilbert. 1978. Soil Survey of Marion County, Indiana. United States Department of Agriculture, Soil Conservation Service. 63 p.
- Suter, G.W. 1996. Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Freshwater Biota. Environmental Toxicology and Chemistry, Vol. 15, No. 7, pp. 1232-1241.
- U.S. Department of Agriculture (USDA). 1991. Soil Survey for Marion County, Indiana. Soil Conservation Service.
- United States Department of Interior (USDOI). 1990. National Wetlands Inventory Map-Indianapolis West, IND. USDOI Fish and Wildlife Service.
- United States Environmental Protection Agency (USEPA). 1994. Data Quality Levels. RCRA Permitting Branch. July 1994.
- USEPA. 1987. Quality Criteria for Water 1986. Office of Water, Regulations and Standards. 1987. EPA 440/5-86-001.
- USEPA. 1989a. Risk Assessment Guidance for Superfund (RAGS), Human Health Evaluation Manual, Interim Final. Office of Solid Waste and Emergency Response: Washington, D.C.
- USEPA. 1989b. Exposure Factors Handbook. Office of Solid Waste and Emergency Response: Washington, D.C.
- USEPA. 1991. Risk Assessment Guidance for Superfund: Volume 1 Human Health Evaluation Manual (Part B, Development of Risk Based Preliminary Remediation Goals). Office of Emergency and Remedial Response.
- USEPA. 1994. Technical Background Document for Soil Screening Guidance. Office of Solid Waste and Emergency Response. EPA/540/R-94/106. December 1994.
- USEPA. 2001. RCRA Draft Supplemental Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway (Vapor Intrusion Guidance). December.
- United States Geological Survey (USGS). 1994. *Hydrogeologic Atlas of Aquifers in Indiana*. Water Resources Investigations Report 92-4142.
- Voelker, David C., Willoughby, Timothy C. 2001. Streamflow, Surface-Water Quality, and Quality of Streambed Sediments in Little Buck Creek and Little Eagle Creek,

- Indianapolis, Indiana, 1990-1994. U.S. Geological Survey Water-Resources Investigations Report 00-4289.
- Walton, W.C. 1988. Practical Aspects of Groundwater Modeling. National Water Well Association, Worthington, Ohio.
- Wier, C.E., and Gray, H.H. 1961. Regional Geologic Map, Indianapolis Sheet: Bloomington, Ind., Indiana Geological Survey, 1 sheet, scale 1:250,000.

Table 1 City Directory Search Former General Motors Corporation Allison Gas Turbine Division, Plant 10 Indianapolis, Indiana IDEM VRP #6991004 KERAMIDA Project No. 2829E

Year	City Directory	Findings
1959	Indianapolis Suburban City Directory	Residential
1960	Indianapolis Suburban City Directory	Residential
1961	Indianapolis Suburban City Directory	Residential
1962	Indianapolis Suburban City Directory	Residential
1963	Indianapolis Suburban City Directory	Residential
1964	Indianapolis Suburban City Directory	3800 Michigan Meadows Apartments
1965	Indianapolis Suburban City Directory	3800 Michigan Meadows Apartments
1966	Indianapolis Suburban City Directory	3800 Michigan Meadows Apartments
1967	Indianapolis Suburban City Directory	3800 Michigan Meadows Apartments
1968	Indianapolis Suburban City Directory	3800 Michigan Meadows Apartments
1969	Indianapolis Suburban City Directory	3800 Michigan Meadows Apartments, 3807 Sherry Lynn Beauty Shop, 3809 Michigan Plaza Barber Shop, Hosiery Shop, 3815 Cloverleaf Real Estate, 3823 Michigan Plaza Coin Laundry
1970	Indianapolis Suburban City Directory	3800 Michigan Meadows Apartments, 3807 Plaza Boutique Salon, 3809 Michigan Plaza Barber Shop, 3815 Cloverleaf Real Estate, 3819 Neff Cleaners, 3823 Michigan Plaza Coin Laundry
1971	Indianapolis Suburban City Directory	3800 Michigan Meadows Apartments, 3807 Plaza Boutique Salon, 3809 Michigan Plaza Barber Shop, 3815 Cloverleaf Real Estate, 3819 Accent Cleaners, 3823 Michigan Plaza Coin Laundry
1972	Indianapolis Suburban City Directory	3800 Michigan Meadows Apartments, 3801 Short Stop Market, 3805 Michigan Plaza Pharmacy, 3807 Plaza Boutique Salon, 3819 Accent Cleaners, 3823 Michigan Plaza Coin Laundry
1973	Indianapolis Suburban City Directory	3800 Michigan Meadows Apartments, 3801 Short Stop Market, 3805 Michigan Plaza Pharmacy, 3815 Indianapolis Marion County Public Library, 3819 Accent Cleaners, 3823 Michigan Plaza Coin Laundry
1974	Indianapolis Suburban City Directory	3800 Michigan Meadows Apartments, 3801 Short Stop Market, 3805 Michigan Plaza Pharmacy, 3815 Indianapolis Marion County Public Library, 3819 Accent Cleaners, 3823 Michigan Plaza Coin Laundry, 3937 Arrows Taxidermy
1975	Indianapolis Suburban City Directory	3800 Michigan Meadows Apartments, 3801 Short Stop Market, 3805 Michigan Plaza Pharmacy, 3815 Indianapolis Marion County Public Library, 3819 Accent Cleaners, 3823 Michigan Plaza Coin Laundry
1976	Indianapolis Suburban City Directory	3800 Michigan Meadows Apartments, 3801 Short Stop Market, 3805 Michigan Plaza Pharmacy, 3815 Indianapolis Marion County Public Library, 3819 Accent Cleaners, 3823 Michigan Plaza Coin Laundry
1977	Indianapolis Suburban City Directory	3800 Michigan Meadows Apartments, 3801 Short Stop Market, 3807 Plaza Boutique Salon, 3815 Indianapolis Marion County Public Library, 3819 Accent Cleaners, 3823 Michigan Plaza Coin Laundry
1978	Indianapolis Suburban City Directory	3800 Michigan Meadows Apartments, 3801 Short Stop Market, 3807 Plaza Boutique Salon, 3815 Indianapolis Marion County Public Library, 3819 Accent Cleaners, 3823 Michigan Plaza Coin Laundry
1979	Indianapolis Suburban City Directory	3800 Michigan Meadows Apartments, 3801 Short Stop Market, 3805 Tyndalls Health Club, 3809 Pizza Time, 3815 Indianapolis Marion County Public Library, 3819 Accent Cleaners, 3823 Michigan Plaza Coin Laundry
1980	Indianapolis Suburban City Directory	3800 Michigan Meadows Apartments, 3801 Short Stop Market, 3809 Pizza Time, 3815 Indianapolis Marion County Public Library, 3819 Accent Cleaners, 3823 Michigan Plaza Coin Laundry

Table 1
City Directory Search
Former General Motors Corporation
Allison Gas Turbine Division, Plant 10
Indianapolis, Indiana
IDEM VRP #6991004
KERAMIDA Project No. 2829E

Year	City Directory	Findings
1981	Indianapolis Suburban City Directory	3800 Michigan Meadows Apartments, 3801 Short Stop Market, 3815 Indianapolis Marion County Public Library, 3819 Accent Cleaners, 3823 Michigan Plaza Coin Laundry
1982	Indianapolis Suburban City Directory	3800 Michigan Meadows Apartments, 3801 Short Stop Market, 3815 Indianapolis Marion County Public Library, 3819 Accent Cleaners, 3823 Michigan Plaza Coin Laundry
1983	Indianapolis Suburban City Directory	3800 Michigan Meadows Apartments, 3801 Short Stop Market, 3815 Indianapolis Marion County Public Library, 3819 Accent Cleaners, 3823 Michigan Plaza Coin Laundry
1984	Indianapolis Suburban City Directory	3800 Michigan Meadows Apartments, 3801 Short Stop Market, 3805 Alpha 1 Dog Training, 3815 Indianapolis Marion County Public Library, 3819 Accent Cleaners, 3823 Michigan Plaza Coin Laundry
1985	Indianapolis Suburban City Directory	3800 Michigan Meadows Apartments, 3801 Short Stop Market, 3815 Indianapolis Marion County Public Library, 3819 Accent Cleaners, 3823 Michigan Plaza Coin Laundry
1986	Indianapolis Suburban City Directory	3800 Michigan Meadows Apartments, 3801 Village Pantry, 3809 Mc Cloud Pest Control, 3815 Indianapolis Marion County Public Library, 3819 Accent Cleaners, 3823 Michigan Plaza Coin Laundry
1987	Indianapolis Suburban City Directory	3800 Michigan Meadows Apartments, 3801 Village Pantry, 3805 EZ Rentals Inc., 3809 Mc Cloud Pest Control, 3815 Indianapolis Marion County Public Library, 3819 Accent Cleaners, 3823 Michigan Plaza Coin Laundry
2001	Indianapolis/Marion County City Directory	3801 Village Pantry, 3805 Haughviille Library, 3815 National Handicapped Workshop (Packaging Labeling)

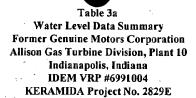
Table 2 Sampling and Analysis Plan Former General Motors Corporation Allison Gas Turbine Division, Plant #10 Indianapolis, Indiana IDEM VRP# 6991004 KERAMIDA Project No. 2829E

				Soil				Groundwate	r
Boring / Well Number	Location Rationale	Method	Total Depth (ft)	Sample Depth (ft)	Sampling Rationale	Lab Testing	Sample Depth (ft)	Sampling Rationale	Lab Testing
KB-48	North of MW-162 in Olin Avenue (right-of- way)	Geoprobe	20	12-14'	Field Observations	PAHs, VOCs	12-17'	First GW encountered	PAHs, VOCs
KB-49	Northeast of MW-162 (in alley way)	Geoprobe	22	14-16'	Highest PID Reading	PAHs VOCs	18-22'	First GW encountered	PAHs, VOCs
KB-50	East of MW-162 (in alley way)	Geoprobe	24	18-20'	Field Observations	PAHs VOCs	20-24'	First GW encountered	PAHs, VOCs
KB-51	South of MW-163 in Olin Avenue (right-of- way)	Geoprobe	20	14-16'	Highest PID Reading	PAHs VOCs	15-20'	First GW encountered	PAHs, VOCs

KB = KERAMIDA Boring

PID = Photoionization Detector

PAH = Polynuclear Aromatic Hydrocarbons VOC = Volatile Organic Compounds


Table 3a Water Level Data Summary Former Genuine Motors Corporation Allison Gas Turbine Division, Plant 10 Indianapolis, Indiana IDEM VRP #6991004 KERAMIDA Project No. 2829E

I D	TOC Elevation ⁽¹⁾ (feet amsl)	Ground Elevation ⁽¹⁾ (feet amsl)	Screen Interval (feet bgs)	Screen Depth (feet amsl)	Date Gauged	DTW (feet)	GW Elevation (feet amsl)	Average GW Elevation (feet amsl)	GW Elevation	Maximum GW Elevation (feet amsl)	GW Fluctuation (feet)
MW10-1	714.04	NA	7-17	707.04-697.04	07/14/95	14.07	699.97				
•				,	09/11/95	14.25	699.79				
			*		02/05/97	12.75	701.29				
					11/22/99	14.53	699.51				
	·				02/28/00	14.37	699.67				
	713.71	712.30	7- 17	7 06. 71-6 96. 7 1	11/07/00	14.62	699.09				
		· ·			06/21/01	NA	NA				
					07/24/01	14.40	699.31				
	·				01/30/02	14.25	699.46				
					07/19/02	13.45	700.26				
					05/07/03	11.21	699.36	699.77	699.09	701.29	2.20
MW-10-1R	714.00	711.75	7-17	704.75-694.75	12/03/03	14.35	699.65				
			·		03/10/04	11.73	702.27				
				·•	06/02/04	14.31	699.69	700.54	699.65	702.27	2.62
1W-132	712.17	NA ·	10-20	702.17-692.17	07/14/95	11.39	700.78				
			·		09/11/95	11.49	700.68				
					02/05/97	10.25	701.92				
		,			02/26/97	11.17	701.00				
		•	'		11/22/99	12.15	700.02				
		•		·	02/28/00	10.76	701.41				
•	712.19	712.70	10-20	702.19-692.19	11/07/00	dry	NA			-	
	•	·			06/21/01	NA	NA				
	712.22	712.57	10-20	702.22-692.22	07/24/01	11.72	700.50				
	٠.	-	, ,		01/30/02	11.97	700.25				
					07/22/02	11.98	700.24				
					05/07/03	11.35	700.87				
		•		·	12/03/03	11.72	700.50				
	•				03/10/04	11.46	700.76				
					06/02/04	11.09	701.13	700.77	700.02	701.92	1.90
1W-133	708.79	NA	8-18	700.79-690.79	09/11/95	8.84	699.95				
					02/05/97	7.29	701.50				
	. ,	•			11/22/99	8.34	700.45		 		
					02/28/00	8.61	700.18	,	 		
	708.83	709.10	8-18	700.83-690.83	11/07/00	NA	NA		 		
	, , , , , ,				06/21/01	NA	NA NA	-	 		
ĺ					07/24/01	NA	NA NA				
				-	01/30/02	NA	NA NA	700.52	699.95	701.50	1.55

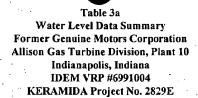


Table 3a Water Level Data Summary Former Genuine Motors Corporation Allison Gas Turbine Division, Plant 10 Indianapolis, Indiana IDEM VRP #6991004 KERAMIDA Project No. 2829E

	45			Upper Sand Unit				Average GW	GW	Maximum GW	GW
Monitoring Well ID	TOC Elevation (1) (feet amsl)	Ground Elevation ⁽¹⁾ (feet amsl)	Screen Interval (feet bgs)	Screen Depth (feet amsl)	Date Gauged	DTW (feet)	GW Elevation (feet amsl)	Elevation (feet amsl)	Elevation (feet amsl)	Elevation (feet amsl)	Fluctuation (feet)
MW-133R .	709.03		7-17		12/04/03	9.76	699.27			`	`
	•				03/10/04	9.19	699.84				
	•	•			06/02/04	8.95	700.08	699.73	699.27	700.08	0.81
MW-135	713.69	NA	10-20	703.69-693.69	07/14/95	13.26	700.43				
•					09/11/95	13.66	700.03				
				·	02/05/97	11.96	701.73	•			
		•			02/26/97	12.47	701.22				
			,		11/22/99	14.20	699.49				
					02/28/00	14.05	699.64				
	713.70	714.10	10-20	703.70-693.70	11/07/00	14.12	699.58				
					06/20/01	13.85	699.85				
	,				07/24/01	13.67	700.03				
	•				01/30/02	13.80	699.90				
		•			07/15/02	12.05	701.65				
				•	12/03/03	13.01	700.69				
				*	03/10/04	12.97	700.73				
		•	İ		06/02/04	12.35	701.35	700.45	699.49	701.73	2.24
MW-145	707.90	NA	18-28	689.90-679.90	07/14/95	8.85	699.05				
٠.		·			09/11/95	8.85	699.05				
				#	02/05/97	7.43	700.47				
				-	11/22/99	9.10	699.80				
٠.				•	02/28/00	8.62	699.28				
	707.94	709.00	18-28	689.94-679.94	11/07/00	8.74	699.20				
					06/21/01	8.82	699.12				
	707.98	708.64	18-28	689.98-679.98	07/24/01	8.78	699.20				
				•	01/30/02	8.05	699.93				
				-	07/22/02	8.89	699.09				
				•	12/04/03	8.85	699.13				
		r.			03/10/04	8.93	699.05				
		•			06/02/04	8.51	699.47	699.37	699.05	700.47	1.42

,				Jpper Sand Unit	Monitoring We	ells				·	
Monitoring Wall	TOC Elevation (i)	Ground Elevation ⁽¹⁾	C		.	TO CHANGE		Average GW	GW	Maximum GW	GW -
ID	(feet amsi)	(feet amsl)	(feet bgs)	Screen Depth (feet amsl)	Date Gauged	DTW (fact)	GW Elevation	Elevation	Elevation	Elevation (feet amsl)	Fluctuation
						(feet)	(feet amsi)	(feet amsl)	(teet amsi)	(teet amsi)	(feet)
MW-146	708.67	NA	15-25	693.67-683.67	07/14/95	9.41	699.26				
	-	·			09/11/95	9.44	699.23				
				•	02/05/97	7.95	700.72				
					11/22/99	9.73	698.94		·		
•					02/28/00	9.91	698.76	-			
	708.71	709.10	15-25	693.71-683.71	11/07/00	8.95	699.76				
		•			06/21/01	9.48	699.23				
		·	·		07/24/01	9.51	699.20			·	
				•	01/30/02	9.31	699.40				
•		•	,		07/15/02	10.09	698.62				-
					12/03/03	9.5	699.21				
					12/19/03	9.5	699.21				
					03/10/04	9.46	699.25				
					06/02/04	9.12	699.59	699.32	698.62	700.72	2.10
MW-147	711.88	NA	20-30	691.88-681.88	07/14/95	11.09	700.79				
			•		09/11/95	11.20	700.68				
					02/05/97	9.91	701.97				
					11/22/99	11.49	700.39				
	,	•	**		02/28/00	11.44	700.44				
	711.53	711.60	20-30	691.53-681.53	11/07/00	11.40	700.13	700.73	700.13	701.97	1.84
ИW-147A	711.61	712.07	20-30	691.61-681.61	06/21/01	12.46	699.15				
					07/24/01	11.22	700.39				
			·		01/30/02	11.34	700.27		1		······································
					07/22/02	11.06	700.55				
					05/07/03	11.5	700.11				
					12/03/03	11.14	700.47	<u> </u>	 		
	*				03/10/04	10.79	700.82				
					06/02/04	10.45	701.16	700.37	699.15	701.16	2.01
					00/02/04	10.43	/01.10	100.31	077.13	/01.10	2.01

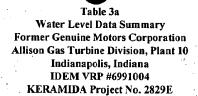

			1	Upper Sand Unit	Monitoring Wo	ells					
Monitoring Well ID	TOC Elevation (1)	Ground Elevation ⁽¹⁾ (feet amsl)	Screen Interval	Screen Depth (feet amsl)	Date Gauged	DTW (feet)	GW Elevation (feet amsl)	Average GW Elevation (feet amsl)	GW Elevation	Maximum GW Elevation (feet amsl)	GW Fluctuation (feet)
			, 5,		07/11/1/07			(icet ainsi)	(ICCC amsi)	(Icci amsi)	(icet)
MW-148	711.00	NA	10.5-25.5	700.50-685.50	07/14/95	10.43	700.57			ļ	•
*					09/11/95	10.50	700.50		<u> </u>	ļ	
					02/05/97	8.25	702.75				
					02/26/97	10.15	700.85				
					11/22/99	11.50	699.50				
·					02/28/00	10.36	700.64				
	711.04	712.00	10.5-25.5	700.54-685-51	11/07/00	10.90	700.14				
					06/21/01	10.73	700.31				
	711.07	712.00	10.5-25.5	700.57-685.57	07/24/01	10.55	700.52			ļi	· · · · · · · · · · · · · · · · · · ·
					01/30/02	10.73	700.34				
	•				07/22/02	11.31	699.76				
		· ·			05/07/03	11.25	699.82			·	
	•	1.		*	12/03/03	10.31	700.76				
		•			03/10/04	10.16	700.91				
		· ·			06/02/04	10.11	700.96	700.56	699.50	702.75	3.25
MW-150	712.93	NA .	4-19	708.93-693.93	09/11/95	13.30	699.63				
					02/05/97	11.75	701.18				-
			·		11/22/99	13.57	699.36				
					02/28/00	13.50	699.43			·	
	712.90	713.30	4-19	708.90-693.90	11/07/00	13.80	699.10				
		,			06/20/01	13.51	699.39				
•	712.96	713.38	4-19	708.96-693.96	07/24/01	12.88	700.08		 		
	. 13.70			, , , , , , , , , , , , , , , , , , , ,	01/30/02	13.76	699.20				
					07/19/02	12.18	700.78				
	-				05/07/03	11.85	701.11				
					12/03/03	12.85	700.11		 		
			1.		03/10/04	13.00	699.96		 	 	
		*			06/02/04	12.17	700.79	700.01	699.10	701.18	2.08
		l		Ĺ	00/02/04	12.1/	700.79	/00.01	033.10	/01.16	2.00

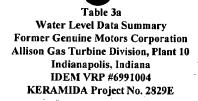
Table 3a Water Level Data Summary Former Genuine Motors Corporation Allison Gas Turbine Division, Plant 10

Indianapolis, Indiana IDEM VRP #6991004 KERAMIDA Project No. 2829E

				Upper Sand Unit	Monitoring We	elis		• •			
	(n)	m)						Average GW	Minimum GW	GW	GW
Monitoring Well ID	TOC Elevation (1) (feet amsl)	Ground Elevation ⁽¹⁾ (feet amsl)	Screen Interval (feet bgs)	Screen Depth (feet amsl)	Date Gauged	DTW (feet)	GW Elevation (feet amsl)	Elevation (feet amsl)	Elevation (feet amsl)	Elevation (feet amsl)	Fluctuation (feet)
MW-151	712.96	NA	5-20	707.96-692.96	07/14/95	13.93	699.03				
		•			09/11/95	14.04	698.92				
,					02/05/97	12.80	700.16				
		4			11/22/99	13.97	698.99				
					02/28/00	13.94	699.02				
	712.93	713.20	5-20	707.93-692.93	11/07/00	14.15	698.78				
		•			06/20/01	13.98	698.95				
					07/24/01	13.88	699.05	· · · · · · · · · · · · · · · · · · ·			
		,		•	01/30/02	13.80	699.13				
					07/18/02	13.46	699.47				
İ					12/04/03	13.85	699.08				
	•	٠,	•		03/10/04	NA	NA			***	: :
			·		06/02/04	13.44	699.49	699.17	698.78	700.16	1.38
MW-152	713.06	NA	5-20	708.06-698.06	07/14/95	13.45	699.61				: :
	•	. *			. 09/11/95	13.57	699.49				
		•			02/05/97	12.21	700.85		-		: : :
		•			02/26/97	12.92	700.14				
				•	11/22/99	13.90	699.16				
			•		02/28/00	13.38	699.68				
	712.93	713.20	5-20	707.93-697.93	11/07/00	13.84	699.09				•
	* *			•	06/20/01	13.64	699.29				
	•				07/24/01	13.54	699.39				
					01/30/02	13.46	699.47	····		<u> </u>	· · · · · · · · · · · · · · · · · · ·
		,			07/15/02	12.89	700.04				
·					12/03/03	13.31	699.62	***			····
					03/10/04	13.30	699.63	 	<u> </u>		
					06/02/04	12.79	700.14	699.69	699.09	700.85	1.76

Monitoring Well ID	TOC Elevation (1) (feet amsl)	Ground Elevation ⁽¹⁾ (feet amsl)	Screen Interval (feet bgs)	Screen Depth (feet amsl)	Date Gauged	DTW (feet)	GW Elevation (feet amsl)	Average GW Elevation (feet amsl)	GW Elevation	Maximum GW Elevation (feet amsl)	GW Fluctuation (feet)
MW-153	711.64	NA	4.5-19.5	707.14-692.14	07/14/95	11.77	699.87				
	*				09/11/95	11.76	699.88				
					02/05/97	9.78	701.86				
					02/26/97	11.14	700.50				
			*		11/22/99	12.25	699.39				
					02/28/00	11.26	700.38				
	711 .67	709.30	4.5-19.5	707.67-692.67	11/07/00	12.15	699.52				
	•				06/21/01	11.95	699.72				
	·		.]		07/24/01	11.92	699.75				
	•				01/30/02	11.83	699.84				
				٠.	07/22/02	11.82	699.85				
					12/03/03	12.36	699.31				
					03/10/04	11.44	700.23				
					06/02/04	11.49	700.18	700.02	699.31	701.86	2.55
MW-154	714.22	NA NA	5-20	709.22-699.22	07/14/95	13.31	700.91				
					09/11/95	13.42	700.80				
			·		02/05/97	12.17	702.05				
	•			•	02/26/97	13.07	701.15				
					11/22/99	14.11	700.11				
•				·	02/28/00	13.38	700:84				
	714.26	711.60	5-20	709.26-699.26	11/07/00	14.02	700.24	_			
					06/21/01	13.79	700.47				
			•		07/24/01	13.77	700.49				
·			•		01/30/02	13.88	700.38				***************************************
		·			07/22/02	13.37	700.89				
			•		12/03/03	13.57	700.69				
		'			03/10/04	13.41	700.85				
					06/02/04	13.44	700.82	700.76	700.11	702.05	1.94

Table 3a Water Level Data Summary Former Genuine Motors Corporation Allison Gas Turbine Division, Plant 10 Indianapolis, Indiana IDEM VRP #6991004 KERAMIDA Project No. 2829E


Monitoring Well ID	TOC Elevation ⁽¹⁾ (feet amsl)	Ground Elevation ⁽¹⁾ (feet amsl)	Screen Interval (feet bgs)	Screen Depth (feet amsl)	Date Gauged	DTW (feet)	GW Elevation (feet amsl)	Average GW Elevation (feet amsl)	GW Elevation	Maximum GW Elevation (feet amsl)	GW Fluctuation (feet)
MW-156	711.69	NA	5-20	706.69-691.69	09/11/95	12.21	699.48				
					02/05/97 11/22/99	10.65 12.52	701.04 699.17				
	•				02/28/00	12.52	699.17				
	711.72	712.00	5-20	706.72-691.72	11/07/00	12.41	699.06				
	711.72	712.00	3-20	700.72-091.72	06/20/01	12.43	699.29				
					07/24/01	12.35	699.37				
·				•	01/30/02	12.25	699.47	·			
					07/18/02	11.46	700.26				
					12/04/03	11.97	699.75				
		-			03/10/04	11.82	699.90				
					06/02/04	11.48	700.24	699.69	699.06	701.04	1.98
MW-157	711.30	NA	5-20	706.30-691.30	02/05/97	10.71	700.59				
					02/26/97	11.14	700.16				
					11/22/99	NA	NA				
					02/28/00	12.40	698.90				
	711.27	711.50	5-20	706.27-691.27	11/07/00	12.55	698.72				
		•		•	06/21/01	12.34	698.93				
					07/24/01	12.17	699.10				
		*			01/30/02	12.18	699.09				
	,			•	07/19/02	11.10	700.17		- 1		
		,			12/04/03	11.80	699.47				
	•	•			03/10/04	11.66	699.61				
					06/02/04	12.94	698.33	699.37	698.33	700.59	2.26
MW-159					02/28/00	11.19	698.81 ⁽³⁾				-
	710.00	710.40	, NA	NA	11/07/00	11.47	698.53				
					06/21/01	11.43	698.57				
					07/24/01	_11.36	698.64				
					01/30/02	11.22	698.78				
					07/19/02	12.13	697.87				
1					03/10/04	12.15	697.85				
					06/02/04	11.94	698.06	698.33	697.85	698.78	0.93

Water Level Data Summary Former Genuine Motors Corporation Allison Gas Turbine Division, Plant 10 Indianapolis, Indiana IDEM VRP #6991004

KERAMIDA Project No. 2829E

Monitoring Well ID	TOC Elevation ⁽¹⁾ (feet amsl)	Ground Elevation ⁽¹⁾ (feet amsl)		Jpper Sand Unit Screen Depth (feet amsl)	Date Gauged	DTW (feet)	GW Elevation (feet amsl)		Minimum GW Elevation (feet amsl)	Maximum GW Elevation (feet amsl)	GW Fluctuation (feet)
MW-160	701.1 ⁽²⁾	701.35 ⁽²⁾	3-13	698.10-688.10	11/07/00	2.17	698.93				
					06/21/01	1.95	699.15				
					07/24/01	2.16	698.94				
					01/30/02	1.78	699.32	•			
					07/17/02	2.31	698.79				
					12/04/03	2.58	698.52				
					03/10/04	2.55	698.55				
					06/04/04	2.26	698.84	698.88	698.52	699.32	0.80
MW-161	702.99 ⁽²⁾	703. 38⁽²⁾	3-13	699.99-689.99	11/07/00	4.01	698.98				
					06/21/01	3.69	699.30				
					07/24/01	4.02	698.97				
					1/30/2002	3.58	699.41				
					07/18/02	4.17	698.82				
					12/04/03	3.10	699.89				
					03/10/04	1.07	701.92				
					06/04/04	2.83	700.16	699.68	698.82	701.92	3.10
MW-164	718.56	719.35	16-26	702.56-692.56	11/07/00	19.87	695.69				
•		-			06/21/01	19.67	698.89			·	
		· ·		,	07/24/01	19.47	696.09				
					01/30/02	19.45	699.11				
				*	07/19/02	17.97	700.59				
					12/05/03	18.75	699.81				
					03/10/04	18.60	699.96				
					06/02/04	19.52	699.04	698.65	695.69	700.59	4.90
MW-165S	712.54	712.88	10-20	702.54-692.54	06/21/01	13.80	698.74				
l					07/24/01	13.71	698.83				
					01/30/02	13.52	699.02				
					07/18/02	13.82	698.72				
					12/05/03	13.56	698.98				
		·			03/10/04	13.93	698.61				
					06/02/04	13.69	698.85	698.85	698.61	699.04	0.43

			· · · · · · · · · · · · · · · · · · ·	Upper Sand Unit		-113			T	T	
-								Avanaga CW	Minimum	Maximum	CITE
Monitoring Well	TOC Elevation (1)	Ground Elevation(1)	Screen Interval	Screen Depth	Date Gauged	DTW	CW Florestion	Average GW		GW	GW
ID	(feet amsl)	(feet amsl)	(feet bgs)	(feet amsl)	Date Gauged	(feet)	GW Elevation (feet amsl)	Elevation		Elevation	
MW-166S	712.99	713.38	10-20		07/24/01		- `	(feet amsi)	(leet amsi)	(feet amsl)	(feet)
WW-1003	712.99	/13.36	10-20	702.99-692.99	07/24/01	14.32	698.67		 	<u></u>	
				-	01/30/02	14.32	698.67				
			·		07/18/02	14.41	698.58		 		·
					12/19/03	14.69	698.30			ļ	
·		i			03/10/04	14.61	698.38				
MW-167S	716.25	716.55	12.22	704.05 (04.05	06/02/04	14.28	698.71	698.60	698.30	698.85	0.55
WW-10/3	/10.23	/16.55	12-22	704.25-694.25	06/21/01	17.99	698.26				
					07/24/01	17.81	698.44				
					01/30/02	17.90	698.35				
·		·			07/17/02	17.74	698.51				
					12/04/03	18.12	698.13				
					03/10/04	18.00	698.25				
					06/02/04	17.71	698.54	698.40	698.13	698.71	0.58
MW-168S	715.71	716.12	12-22	703.71-693.71	06/21/01	17.66	698.05				*
		<u> </u>			07/24/01	17.60	698.11				
	714.79	715.06	12-22	703.06-693.06	01/30/02	17.06	697.73		-		
,					7/18/2002	17.39	697.4				
•					03/10/04	17.43	697.36				
			·		06/02/04	17.33	697.46	697.86	697.36	698.54	1.18
MW-169S	715.95	716.25	15-25	700.95-690.95	01/30/02	19.75	696.20				
		,			07/17/02	18.91	697.04				
					12/04/03	19.72	696.23				· · · · · ·
		,	,		03/10/04	19.47	696.48				
					06/02/04	19.56	696.39	696.82	696.20	697.46	1.26
MW-170S	717.40	717.77	17-27	700.40-690.40	01/30/02	20.45	696.95				
					07/17/02	19.35	698.05				
				•	03/10/04	20.19	697.21				- i ·
					06/02/04	20.76	696.64	696.87	696.23	698.05	1.82
MW-171S	711.83	712.19	12-22	699.83-689.83	01/30/02	15.29	696.54	0,0.01	0,0,20	070.03	1.04
*	'			227.05 007.05	07/17/02	15.02	696.81				
					03/10/04	15.14	696.69				
					06/02/04		ostruction	696.98	696.54	698.05	1 51
MW-172S	716.23	716.58	15-25	701.58-691.58	09/04/02			070.76	090.34	070.03	1.51
1717.1725	/10.23	/10.56	13-23	/01.38-091.38	09/04/02	20.45	695.78		ļ		·
	•					19.61	696.62	(0) 50			
					06/02/04	19.78	696.45	696.50	695.78	696.81	1.03

Table 3a
Water Level Data Summary
Former Genuine Motors Corporation
Allison Gas Turbine Division, Plant 10
Indianapolis, Indiana
IDEM VRP #6991004
KERAMIDA Project No. 2829E

Monitoring Well ID	TOC Elevation ⁽¹⁾ (feet amsl)	Ground Elevation ⁽¹⁾ (feet amsl)	Screen Interval	Screen Depth (feet amsl)	Date Gauged	DTW (feet)	GW Elevation (feet amsl)	Average GW Elevation (feet amsl)	GW Elevation	Maximum GW Elevation (feet amsl)	GW Fluctuation (feet)
MW-165D	712.34	712.78	42-47	670.34-665.34	01/30/02	13.33	699.01				
			•		07/18/02	13.66	698.68				
		·			12/05/03	13.51	698.83				
				•	03/10/04	13.71	698.63				
					06/02/04	13.49	698.85	697.86	695.78	699.01	3.23
MW-166D	712.76	713.04	46-51	666.76-661.76	01/30/02	14.10	698.66				
					07/18/02	14.08	698.68				
		•			01/06/04	13.03	699.73				
		•			03/10/04	14.35	698.41				
					06/02/04	14.09	698.67	698.81	698.41	699.73	1.32
MW-167D	716.25	716.60	28-33	688.25-683.25	01/30/02	17.90	698.35				
					07/17/02	17.73	698.52				
					12/04/03	18.18	698.07				
		. *			03/10/04	18.04	698.21				
•					06/02/04	17.72	698.53	698.56	698.07	699.73	1.66
MW-168D	714.71	715.09	26-31	688.71-683.71	01/30/02	17.00	697.71				
		. *			07/18/02	17.27	697.44				
		:	•	•	03/10/04	0	bstruction				
					06/02/04	17.28	697.43		1		
MW-169D	715.23	716.23	32-37	683.23-678.23	01/30/02	19.65	695.58				
					07/17/02	18.82	696.41				
					12/04/03	19.66	695.57				
					03/10/04	19.41	695.82				
	·				06/02/04	19.52	695.71	696.28	695.57	697.44	1.87
MW-170D	717.34	717.76	34-39	683.34-678.34	01/30/02	20.40	696.94				
		,			07/17/02	19.29	698.05				
				*	03/10/04	20.13	697.21				· · · · · · · · · · · · · · · · · · ·
					06/02/04	20.21	697.13	696.61	695.57	698.05	2.48
MW-171D	711.88	712.15	44-49	667.88-662.88	01/30/02	15.73	696.15		<u> </u>		
					07/17/02	15.16	696.72		 	· -	
					03/10/04	15.51	696.37		†		
					06/02/04		bstruction	696.94	696.15	698.05	1.90
MW-172D	716.03	716.53	33-38	683.53-678.53	09/04/02	20.17	695.86	0,0.,,	0,0.13	0,0.00	1.70
17117-1740	/ 10.03	110.55	. 00-00	003.33-010.33	03/10/04	19.43	696.60				
					06/02/04	19.43	696.42	696.46	695.86	697.13	1.27
			L		00/02/04	17.01	090.42	090.40	095.86	097.13	1.27

Table 3a
Water Level Data Summary
Former Genuine Motors Corporation
Allison Gas Turbine Division, Plant 10
Indianapolis, Indiana
IDEM VRP #6991004
KERAMIDA Project No. 2829E

Monitoring Well ID	TOC Elevation ⁽¹⁾ (feet amsl)	Ground Elevation ⁽¹⁾ (feet amsl)	Screen Interval (feet bgs)	Screen Depth (feet amsl)	Date Gauged	DTW (feet)	GW Elevation (feet amsl)	Average GW Elevation (feet amsl)	GW Elevation	Maximum GW Elevation (feet amsl)	GW Fluctuation (feet)
MW-301	712.75	NA	45-50	667.75-662.75	02/05/97	11.75	701.00				
		·		1.1	11/22/99	13.77	698.98			•	
					02/28/00	13.50	699.25				
	712.75	713.20	45-50	667.75-662.75	11/07/00	13.76	· 698.99				
					06/20/01	13.57	699.18				-
	:		,	• "	07/24/01	13.59	699.16				
•					01/30/02	13.31	699.44				
				٠	07/18/02	12.78	699.97				
					03/10/04	13.74	699.01				
		•			06/02/04	13.11	699.64	699.33	698.99	699.97	0.98
· -				<i>F</i>	Average GW Ele	vation - U	Jpper Sand Unit:	698.90			
			·	Mi	inimum GW Ele	vation - l	Jpper Sand Unit:		695.57		
				Ma	ximum GW Ele	vation - l	Jpper Sand Unit:			702.75	
							Jpper Sand Unit:				1.81
				Historio	GW Elevation	Range - U	Jpper Sand Unit:		:		7.18

Table 3b Water Level Data Summary Former Genuine Motors Corporation Allison Gas Turbine Division, Plant 10 Indianapolis, Indiana **IDEM VRP #6991004** KERAMIDA Project No. 2829E

Lower Silty Clay Unit Monitoring Wells

Monitoring Well ID	TOC Elevation (1)	Ground Elevation ⁽¹⁾		Screen Depth	Date Gauged	DTW	GW Elevation	Average GW Elevation	Minimum GW Elevation	Maximum GW Elevation	GW Fluctuation
	(feet amsl)	(feet amsl)	(feet bgs)	(feet amsl)		(feet)	(feet amsl)	(feet amsl)	(feet amsl)	(feet amsi)	(feet)
MW-202	711.88	NA	33-35	678.88-676.88	07/14/95	22.78	689.10				
					09/11/95	12.33	699.55				
					02/05/97	11.20	700.68				
· ·	•	•	-		02/26/97	12.29	699.59				
	·				11/22/99	12.07	699.81			· ·	
					02/28/00	11.96	699.92				
	711.86	709.30	33-35	678.86-676.86	11/07/00	12.68	699.18		[-	
					06/21/01	12.46	699.40				
			·		07/24/01	12.36	699.50				
			:		01/30/02	12.39	699.47				
			•		07/22/02	12.28	699.58	699.67	699.18	700.68	1.50
MW-302	711.54	NA	45-55	666.54-656.54	02/05/97	11.26	700.28				
				*	02/26/97	12.33	699.21			·	***************************************
					11/22/99	13.26	698.28	-			**
·					02/28/00	12.70	698.84				
	711.60	709.60	45-55	666.60-656.60	11/07/00	13.00	698.60				
		·	}		06/21/01	12.99	698.61				
			·		07/24/01	12.82	698.78				
					01/30/02	12.61	698.99				
	.				07/22/02	12.90	698.7				
					03/10/04	12.93	698.67				
					06/02/04	12.68	698.92	698.90	698.28	700.28	2.00
				Avera	ge GW Elevatio	n - Lowe	r Silty Clay Unit	699.28			
				Minimu	m GW Elevation	n - Lower	Silty Clay Unit:		698.28		
				Maximu	m GW Elevation	n - Lower	Silty Clay Unit			700.68	
				Average	GW Fluctuation	n - Lower	Silty Clay Unit	- "			1.75
							Silty Clay Unit				2.40

NA Information is not available

⁽¹⁾For wells surveyed more than once, subsequent survey information is listed with the first gauging event following the survey.

⁽²⁾ Top of Casing elevation not available. Water depth calculated from ground elevation.

⁽³⁾ Survey Data from 11-7-00 was used to calculate the groundwater elevation

⁽⁴⁾Survey data from 3-6-02 was used to calculate all groundwater and screen elevations

⁽⁵⁾ Elevation of three foot mark on stream gauge, surveyed 3-6-02

BGS - below ground surface

DTW - depth to water

GW - groundwater

SW - surface water

TOC - top of well casing

Water Level Data Summary Former Genuine Motors Corporation Allison Gas Turbine Division, Plant 10 Indianapolis, Indiana IDEM VRP #6991004 KERAMIDA Project No. 2829E

Little Eagle Creek Stream Gauge

Monitoring Well ID	(feet amsl)	Ground Elevation ⁽¹⁾ (feet amsl)	Screen Interval (feet bgs)	Screen Depth (feet amsl)	Date	Reading (feet)	SW Elevation (feet amsl)	Average GW Elevation (feet amsl)	GW Elevation	Maximum GW Elevation (feet amsl)	GW Fluctuation (feet)
Holt	702.23 ⁽⁵⁾	NA	NA	NA	11/22/99	NA	702.25				
					02/28/00	NA	NA				
					11/07/00	NA	NA				
					06/21/01	NA	NA				
					07/24/01	2.95	699.28				
					01/30/02	0.30	701.93	701.15	699.28	702.25	2.97
Olin	701.43 ⁽⁵⁾	NA	NA	NA	11/22/99	NA	701.39				
					02/28/00	NA	NA				
					11/07/00	NA	NA				
					06/21/01	NA	NA				
					07/24/01	2.74	698.69				
					01/30/02	0.65	700.78	700.29	698.69	701.39	2.70
						Averag	e SW Elevation:	700.72			
						Minimur	n SW Elevation:		698.69		
						Maximur	n SW Elevation:			702.25	
							SW Fluctuation:				3.56

NA Information is not available

BGS - below ground surface

DTW - depth to water

GW - groundwater

SW - surface water

TOC - top of well casing

⁽¹⁾ For wells surveyed more than once, subsequent survey information is listed with the first gauging event following the survey.

Top of Casing elevation not available. Water depth calculated from ground elevation.

⁽³⁾Survey Data from 11-7-00 was used to calculate the groundwater elevation

⁽⁴⁾Survey data from 3-6-02 was used to calculate all groundwater and screen elevations

⁽⁵⁾Elevation of three foot mark on stream gauge, surveyed 3-6-02

Page 109

Reference 36

Table 4 Calculated Vertical Hydraulic Gradients Former General Motors Corporation Allison Gas Turbine Division, Plant 10 Indianapolis, Indiana IDEM VRP #6991004 KERAMIDA Project No. 2829E

		Top of Screen	Bottom of Screen Elevation	Mid-screen	Groundwater	Mid-screen	Groundwater Elevation	Vertical
Date	Well ID	Elevation (ft)	(ft)	Elevation (ft)	Elevation (ft)	Distance (ft)	Difference (ft)	Gradient
2/5/1997	MW-150 MW-200	708.93 668.03	693.93 663.03	701.43 665.53	701.18 701.07	35.90	-0.11	-0.0031
11/22/1999	MW-150	708.93	693.93	701.43	699.36	35.90	-0.20	-0.0056
11/22/1999	MW-200 MW-150	668.03 708.93	663.03 693.93	665.53 701.43	699.16 699.43			
2/28/2000	MW-200	668.03	663.03	665.53	699.50	35.90	0.07	0.0019
11/7/2000	MW-150	708.90 668.00	693.90 663.00	701.40 665.50	699.10 699.05	35.90	-0.05	-0.0014
	MW-200 MW-150	708.90	693.90	701.40	699.39	25.00	-0.10	-0.0028
6/20/2001	MW-200	668.00	663.00	665.50	699.29	35.90	-0.10	-0.0028
7/24/2001	MW-150 MW-200	708.96 668.06	693.96 663.06	701.46 665.56	700.08 699.43	35.90	-0.65	-0.0181
1/30/2002	MW-150	708.96	693.96	701.46	699.20	35.90	0.38	0.0106
	MW-200 MW-150	668.06 708.96	663.06	665.56 701.46	699.58 700.78		0.11	0.0114
7/19/2002	MW-200	668.06	663.06	665.56	700.37	35.90	-0.41	-0.0114
7/14/1995	MW-151 MW-201	707.96 676.29	692.96 674.29	700.46 675.29	699.03 699.14	25.17	0.11	0.0044
9/11/1995	MW-151	707.96	692.96	700.46	698.92	25.17	0.38	0.0151
3/11/1333	MW-201 MW-151	676.29 707.96	674.29 692.96	675.29 700.46	699.30 700.16			
2/5/1997	MW-201	676.29	674.29	675.29	700.64	25.17	0.48	0.0191
11/22/1999	MW-151	707.96	692.96	700.46 675.29	698.99 700.16	25.17	1.17	0.0465
	MW-201 MW-151	676.29 707.96	674.29 692.96	700.46	699.02	25 17	0.12	0.0052
2/28/2000	MW-201	676.29	674.29	675.29	699.15	25.17	0.13	0.0032
11/7/2000	MW-151 MW-201	707.93 676.25	692.93 674.25	700.43 675.25	698.78 699.17	25.18	0.39	0.0155
6/20/2001	MW-151	707.93	692.93	700.43	698.95	25.18	0.36	0.0143
	MW-201 MW-151	676.25 707.93	674.25	675.25 700.43	699.31 699.05	-		
7/24/2001	MW-201	676.25	674.25	675.25	698.13	25.18	-0.92	-0.0365
1/30/2002	MW-151 MW-201	707.93 676.25	692.93 674.25	700.43 675.25	699.13 700.17	25.18	1.04	0.0413
7/18/2002	MW-151	707.93	692.93	700.43	699.47	25.18	0.16	0.0064
//18/2002	MW-201	676.25	674.25	675.25	699.63	23.16	0.10	0.0004
2/5/1997	MW-151 MW-301	707.96 667.75	692.96 662.75	700.46 665.25	700.16 701.00	35.21	0.84	0.0239
11/22/1999	MW-151	707.96	692.96	700.46	698.99	35.21	-0.01	-0.0003
	MW-301 MW-151	667.75 707.96	662.75 692.96	665.25 700.46	698.98 699.02		0.00	0.0065
2/28/2000	MW-301	667.75	662.75	665.25	699.25	35.21	0.23	0.0065
11/7/2000	MW-301	707.93 667.75	692.93 662.75	700.43 665.25	698.78 698.99	35.18	0.21	0.0060
6/20/2001	MW-151	707.93	692.93	700.43	698.95	35.18	0.23	0.0065
0/20/2001	MW-301 MW-151	667.75 707.93	662.75	665.25 700.43	699.18 699.05	22110		
7/24/2001	MW-301	667.75	662.75	665.25	699.16	35.18	0.11	0.0031
1/30/2002	MW-151 MW-301	707.93 667.75	692.93 662.75	700.43 665.25	699.13 699.44	35.18	0.31	0.0088
Z.11.120002	MW-151	707.93	692.93	700.43	699.47	35.18	0.50	0.0142
7/1/2002	MW-301	667.75	662.75	665.25	699.97	33.16	0.30	0.0142
2/5/1997	MW-201 MW-301	676.29 667.75	674.29 662.75	675.29 665.25	700.64 701.00	10.04	0.36	0.0359
11/22/1999	MW-201	676.29	674.29	675.29	700.16	10.04	-1.18	-0.1175
	MW-301 MW-201	667.75 676.29	662.75 674.29	665.25 675.29	698.98 699.15			
2/28/2000	MW 301	667.75	662.75	665.25	699.25	10.04	0.10	0.0100
11/7/2000	MW-201 MW-301	676.25 667.75	674.25 662.75	675.25 665.25	699.17 698.99	10.00	-0.18	-0.0180
6/20/2001	MW-201	676.25	674.25	675.25	699.31	10.00	-0.13	-0.0130
	MW-301	667.75 676.25	662.75 674.25	665.25 675.25	699.18 698.13			
7/24/2001	MW-201 MW-301	667.75	662.75	665.25	699.16	10.00	1.03	0.1030
1/30/2002	MW-201	676.25	674.25	675.25	700.17	10.00	-0.73	-0.0730
	MW-301 MW-201	667.75 676.25	662.75 674.25	665.25 675.25	699.44 699.63	10.00	0.24	0.0240
7/18/2002	MW-301	667.75	662.75	665.25	699.97	10.00	0.34	0.0340
7/14/1995	MW-153 MW-202	707.14 678.88	692.14 676.88	699.64 677.88	699.87 689.10	21.76	-10.77	-0.4949
9/11/1995	MW-153	707.14	692.14	699.64	699.88	21.76	-0.33	-0.0152
21 11 1993	MW-202	678.88	676.88	677.88	699.55 701.86	21.70		
2/5/1997	MW-153 MW-202	707.14 678.88	692.14 676.88	699.64 677.88	700.68	21.76	-1.18	-0.0542

Reference 36 Page 110

Table 4 Calculated Vertical Hydraulic Gradients Former General Motors Corporation Allison Gas Turbine Division, Plant 10 Indianapolis, Indiana IDEM VRP #6991004 KERAMIDA Project No. 2829E

Date	Well ID	Top of Screen Elevation (ft)	Bottom of Screen Elevation (ft)	Mid-screen Elevation (ft)	Groundwater Elevation (ft)	Mid-screen Distance (ft)	Groundwater Elevation Difference (ft)	Vertical Gradien
Date	MW-153	707.14	692.14	699.64	700.50			
2/26/1997	MW-202	678.88	676.88	677.88	699.59	21.76	-0.91	-0.0418
	MW-153	707.14	692.14	699.64	699.39	01.76	0.42	0.0193
11/22/1999	MW-202	678.88	676.88	677.88	699.81	21.76	0.42	0.0193
2/28/2000	MW-153	707.14	692.14	699.64	700.38	21.76	-0.46	-0.0211
2/28/2000	MW-202	678.88	676.88	677.88	699.92	21:76	0.10	0.0211
11/7/2000	MW-153	707.67	692.67	700.17	699.52	22.31	-0.34	-0.0152
11///2000	MW-202	678.86	676.86	677.86	699.18			
6/21/2000	MW-153	707.67	692.67	700.17	699.72 699.40	22.31	-0.32	-0.0143
	MW-202	678.86	676.86 692.67	677.86 700.17	699.75			
7/24/2001	MW-153 MW-202	707.67 678.86	676.86	677.86	699.50	22.31	-0.25	-0.0112
	MW-153	707.67	692.67	700.17	699.84			
1/30/2002	MW-202	678.86	676.86	677.86	699.47	22.31	-0.37	-0.0166
	MW-153	707.67	692.67	700.17	699.85	22.21	0.27	-0.0121
7/22/2002	MW-202	678.86	676.86	677.86	699.58	22.31	-0.27	-0.0121
2/5/1007	MW-153	707.14	692.14	699.64	701.86	38.10	-1.58	-0.0415
2/5/1997	MW-302	666.54	656.54	661.54	700.28	36.10	-1.50	0.0113
2/26/1997	MW-153	707.14	692.14	699.64	700.50	38.10	-1.29	-0.0339
= , = ⊘, 1,7,7	MW-302	666.54	656.54	661.54	699.21			
11/22/1999	MW-153	707.14	692.14	699.64	699.39	38.10	-1.11	-0.0291
	MW-302	666.54	656.54	661.54	698.28			
2/28/2000	MW-153	707.14	692.14 656.54	699.64 661.54	700.38 698.84	38.10	-1.54	-0.0404
	MW-302	666.54	692.67	700.17	699.52	-		
11/7/2000	MW-153 MW-302	707.67 666.60	656.60	661.60	698.60	38.57	-0.92	-0.0239
	MW-153	707.67	692.67	700.17	699.72			0.0000
6/21/2000	MW-302	666.60	656.60	661.60	698.61	38.57	-1.11	-0.0288
	MW-153	707.67	692.67	700.17	699.75	20 57	-0.97	-0.0251
7/24/2001	MW-302	666.60	656.60	661.60	698.78	38.57	-0.97	-0.0231
1/30/2002	MW-153	707.67	692.67	700.17	699.84	38.57	-0.85	-0.0220
1/30/2002	MW-302	666.60	656.60	661.60	698.99	36.37	-0.05	. 0.0220
7/22/2002	MW-153	707.67	692.67	700.17	699.85	38.57	-1.15	-0.0298
	MW-302	666.60	656.60	661.60	698.70			
2/5/1997	MW-202	678.88	676.88	677.88	700.68	16.34	-0.40	-0.0245
	MW-302	666.54	656.54	661.54	700.28 699.59			
2/26/1997	MW-202 MW-302	678.88 666.54	676.88 656.54	677.88 661.54	699.39	16.34	-0.38	-0.0233
	MW-202	678.88	676.88	677.88	699.81			
11/22/1999	MW-302	666.54	656.54	661.54	698.28	16.34	-1.53	-0.093€
	MW-202	678.88	676.88	677.88	699.92	16.04	1.00	0.0661
2/28/2000	MW-302	666.54	656.54	661.54	698.84	16.34	-1.08	-0.0661
11/7/2000	MW-202	678.86	676.86	677.86	699.18	16.26	-0.58	-0.0357
11/7/2000	MW-302	666.60	656.60	661.60	698.60	10.20	-0.50	0.0557
6/21/2000	MW-202	678.86	676.86	677.86	699.40	16.26	-0.79	-0.0486
0/21/2000	MW-302	666.60	656.60	661.60	698.61			
7/24/2001	MW-202	678.86	676.86	677.86	699.50	16.26	-0.72	-0.0443
	MW-302	666.60	656.60	661.60	698.78		 	
1/30/2002	MW-202 MW-302	678.86 666.60	676.86 656.60	677.86 661.60	699.47 698.99	16.26	-0.48	-0.0295
		(50.0)	(50.00	(22.0)	600.50			
7/22/2002	MW-202 MW-302	678.86	656.60	661.60	698.70	16.26	-0.88	-0.054
	MW-165S	702.54	692.54	697.54	699.02	20.70	0.01	-0.0003
1/30/2002	MW-165D	670.34	665.34	667.84	699.01	29.70	-0.01	-0.000
7/10/0000	MW-165S	702.54	692.54	697.54	698.72	29.70	-0.04	-0.001
7/18/2002	MW-165D	670.34	665.34	667.84	698.68	29.10	-0.04	0.001.
1/30/2002	MW-166S	702.99	692.99	697.99	698.67	33.73	-0.01	-0.000
.,50,2002	MW-166D	666.76	661.76	664.26	698.66			
7/18/2002	MW-166S	702.99	692.99	697.99	698.58	33.73	0.10	0.0030
	MW-166D	666.76	661.76	664.26	698.68	ļ	 	
1/30/2002	MW-167S MW-167D	704.25 688.25	694.25 683.25	699.25 685.75	698.35 698.35	13.50	0.00	0.0000
	MW-167S	704.25	694.25	699.25	698.52	 	+	<u> </u>
7/17/2002	MW-167D	688.25	683.25	685.75	697.40	13.50	-1.12	-0.083
	MW-167D	703.06	693.06	698.06	697.73	44.05	6.00	0.001
1/30/2002	MW-168D	688.71	683.71	686.21	697.71	11.85	-0.02	-0.001
# 44.045.555	MW-168S	703.06	693.06	698.06	697.40	11.05	0.04	0.0034
7/18/2002	MW-168D	688.71	683.71	686.21	697.44	11.85	0.04	0.0032
1/30/2002	MW-169S	700.95	690.95	695.95	696.20	15.22	-0.62	-0.040
1/30/2002	MW-169D	683.23	678.23	680.73	695.58	13.22	3.02	1 0.070

Table 4

Calculated Vertical Hydraulic Gradients
Former General Motors Corporation
Allison Gas Turbine Division, Plant 10
Indianapolis, Indiana
IDEM VRP #6991004
KERAMIDA Project No. 2829E

Date	Well ID	Top of Screen Elevation (ft)	Bottom of Screen Elevation (ft)	Mid-screen Elevation (ft)	Groundwater Elevation (ft)	Mid-screen Distance (ft)	Groundwater Elevation Difference (ft)	Vertical Gradient
7/17/2002	MW-169S	700.95	690.95	695.95	697.04	15.22	-0.63	-0.0414
1/11/2002	MW-169D	683.23	678.23	680.73	696.41	15.22	0.05	0.0.11.
1/20/2022	MW-170S	700.40	690.40	695.40	696.95	14.56	-0.01	-0.0007
1/30/2002	MW-170D	683.34	678.34	680.84	696.94	14.50	-0.01	-0.0007
7/17/2002	MW-170S	700.40	690.40	695.40	698.05	14.56	0.00	0.0000
//1 //2002	MW-170D	683.34	678.34	680.84	698.05	14.50	0.00	0.0000
1/20/2002	MW-171S	699.83	689.83	694.83	696.54	29.45	-0.39	-0.0132
1/30/2002	MW-171D	667.88	662.88	665.38	696.15	29.43	-0.59	-0.0132
	MW-171S	699.83	689.83	694.83	696.81	29.45	-0.09	-0.0031
7/17/2002	MW-171D	667.88	662.88	665.38	696.72	25.43	0.09	-0.0031
0/4/2002	MW-172S	701.58	691.58	696.58	695.78	15.55	0.08	0.0051
9/4/2002	MW-172D	683.53	678.53	681.03	695.86	13.33	0.06	0.0051

Table 5

Calculated Horizontal Hydraulic Gradients
Former Genuine Motors Corporation
Allison Gas Turbine Division, Plant 10
Indianapolis, Indiana
IDEM VRP #6991004
KERAMIDA Project No. 2829E

Gauging Date	Well Type	Contour Interval	Groundwater Elevation Difference (ft)	Horizontal Distance Between Contour Lines (ft)	Horizontal Gradient
February 28, 2000	Shallow	699-701	2.00	76.90	0.0260
1 Cordary 28, 2000	Silaliow	699-701	2.00	500.00	0.0040
November 7, 2000	Shallow	699-700	1.00	153.85	0.0065
November 7, 2000	Silaliow	699-700	1.00	884.61	0.0011
June 21, 2001	Shallow	698-700	2.00	1038.46	0.0019
Julie 21, 2001	Silaliow	698-700	2.00	1192.31	0.0017
July 24, 2001	Shallow	699-701	2.00	153.85	0.0130
July 24, 2001	Silanow	699-701	2.00	280.77	0.0071
January 30, 2002	Shallow	697-700	3.00	1069.23	0.0028
January 30, 2002	Silanow	697-700	3.00	1392.31	0.0022
July 15-22, 2002	Shallow	697-700	3.00	653.85	0.0046
July 13-22, 2002	Shallow	697-700	3.00	2307.69	0.0013
		•		Average:	0.0060
January 20, 2002	Doon	696-699	3.00	1169.23	0.0026
January 30, 2002	Deep	696-699	3.00	1207.69	0.0025
July 15 22 2002	Door	697-701	4.00	1192.31	0.0034
July 15-22, 2002	Deep	697-701	4.00	1823.07	0.0022

Average: 0.0026

Table 6a - Surface Soil - VOCs Page 1 of 5

Reference 36

Carbon tetrachloride	<0.0000>	<0.0061	<0.0053	<0.0056	<0.0056	<0.0056	<0.0053	<0.0054	<0.0059		NA		NA	
Carbon disulfide	<0.0060	<0.0061	<0.0053	<0.0056	<0.0056	<0.0056	<0.0053	<0.0054	<0.0059		1,000(2)		1,000(2)	
tert-Butylbenzene		<0.0061		<0.0056	<0.0056	<0.0056		<0.0054	<0.0059		1,000(2)		1,000(2)	
sec-parklpenzene		<0.0061			<0.0056	<0.0056	<0.0053	<0.0054	<0.0059		1,000(2)		1,000(2)	
u-Butylbenzene					<0.0056	<0.0056	<0.0053	<0.0054	<0.0059		1,000(2)		1,000(2)	
Bromide) Bromomethane (Methyl	<0.012	<0.012	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.012		NA		NA	
нготогоги		<0.0061	<0.0053	<0.0056	<0.0056	<0.0056	<0.0053	<0.0054	<0.0059		N.A.		NA	
Bromodichloromethane	0	<0.0061	<0.0053	<0.0056	<0.0056	<0.0056	<0.0053	<0.0054	<0.0059		10.3(2)		101(2)	
Bromochloromethane	<0.0060			<0.0056		<0.0056	<0.0053	<0.0054	<0.0059		NA		NA	
Bromobenzene	<0.0000>	<0.0061	<0.0053	<0.0056	<0.0056	<0.0056	<0.0053	<0.0054	<0.0059		NA		NA	
genzene	0	<0.0061	Г	<0.0056	Г	<0.0056	Г		<0.0059		22.07		16.63	
Acrylonitrile	<0.300	<0.300		<0.280					<0.290		NA		NA	
Acrolein				<0.280							NA		NA	
уседоне	<0.120	<0.120	<0.110	<0.110	<0.110	<0.110	<0.110	<0.110	<0.120		1,000		1,000	
Lab Sample No.	293160	293308	293163	293168	293303	293304	293305	293306	293307			STATE OF THE PERSON		leanup Goal
Sample Depth	0-2	0-2	0-2	1.5-2	0.2	0-2	0-2	0.2	0-2	The same of the sa	ce Soil ⁽¹⁾		Surface Soil(1)	I Non-Residential Cleans
Date Samuled	5/16/2001	5/18/2001	5/16/2001	5/16/2001	5/18/2001	5/18/2001	5/18/2001	5/18/2001	5/18/2001	The second second	leanup Goals Surfa		ial Cleanup Goals	etected compound exceeds the VRP Tier II Non-Residential Cleanup Goal etected compound exceeds the VRP Tier II Residential Cleanup Goal
Sample No.	KB-i13	KB-i14	KB-i15	KB-i16	KB-i17	KB-i17 Dup	KB-i18	KB-i18 Dup	KB-i19		Tier II Residential Cleanup Goals Surface Soil ⁽¹⁾		Tier II Non-Residential Cleanup Goals Surface Soil(1)	Detected compound ex.

Table 6a
Surface Soil Analytical Results for VOCs (mg/kg)
Former General Motors Corporation
Allison Gas Turbine Division, Plant 10

KERAMIDA Project No. 2829E Indianapolis, Indiana IDEM VRP #6991004

VOCs = Volatile Organic Compounds Samples analyzed using EPA SW-846 Method 8260 ng/kg = milligrams per kilogram

NA = Not Applicable

Indiana Department of Environmental Management Voluntary Remediation *cis-1,2-Dichloroethylene and trans-1,2-Dichloroethene results are combined

Program Resource Guide, Appendix F Tier II Cleanup Goals-Human Health Evaluation by Office of Environmental Response, July 1996.

22 Calculated using surrogate toxicity values and Tier II equations.

(3) Source: EPA Region 3 Risk-Based Concentration Table - October 1998 Update

	_	_	_	_	_	_		_			_	_	
Dichlorodifluoromethane	<0.012	<0.012	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.012		NA	NA	
	<0.0060	-5%						<0.0054	<0.0059		26.67	2,416.67	
3.3-Dichlorobenzene		<0.0061	<0.0053		<0.0056		<0.0053	<0.0054	<0.0059		NA	NA	
onsznadoroldaid-2,1	0	<0.0061	<0.0053		9500'0>	<0.0056	<0.0053	<0.0054	<0.0059		10,000	10,000	
Dibromomethane (Methylene Bromide)		<0.012	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.012		NA	NA	
onadioomordid-2,1			<0.0053		<0.0056	<0.0056	<0.0053	<0.0054	<0.0059		NA	NA	
1,2-Dibromo-3- Chloropropane	<0.012	<0.012	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.012		NA	NA	
2-Chloroethyl vinyl ether				<0.056	<0.056		<0.053	<0.054	<0.059		NA	NA	
4-Chlorotoluene	<0.0060	<0.0061	<0.0053	<0.0056	<0.0056		<0.0053	<0.0054	<0.0059		NA	NA	
2-Chlortoluene	<0.0060	<0.0061	<0.0053	<0.0056	<0.0056	<0.0056	<0.0053	<0.0054	<0.0059		NA	NA	
Chloromethane (Methyl	<0.012	<0.012	<0.011	<0.011	<0.011	<0.011	<0.011	<0.010	<0.012		NA	NA	
СЪјогогот	<0.024	<0.024	<0.021	<0.022	<0.022	<0.022	<0.021	<0.021	<0.024		104.92	5.28	
СһІогоейняпе	<0.012	<0.012	<0.011	<0.011	<0.011	<0.011	<0.011	<0.010	<0.012		NA	1,000	
Chlorodibromomethane		<0.0061	<0.0053	<0.0056	<0.0056	<0.0056	<0.0053	<0.0054	<0.0059		NA	NA	
Chlorobenzene	<0.0060	<0.0061	<0.0053	<0.0056	П		<0.0053	<0.0054	<0.0059		1,000(2)	1,000(2)	
Lab Sample No.	293160	293308	293163	293168	293303	293304	293305	293306	293307				leanup Goal
Sample Depth (feet)	0-2	0-2	0-2	1.5-2	0-2	0-2	0-2	0-2	0-2		ce Soil ⁽¹⁾	Surface Soil(1)	I Non-Residential C.
Date Sampled	5/16/2001	5/18/2001	5/16/2001	5/16/2001	5/18/2001	5/18/2001	5/18/2001	5/18/2001	5/18/2001	THE RESERVE TO SERVE	Tier II Residential Cleanup Goals Surface Soil(1)	Tier II Non-Residential Cleanup Goals Surface Soil(1)	etected compound exceeds the VRP Tier II Non-Residential Cleanup Goal
Sample No.	KB-i13	KB-i14	KB-i15	KB-i16	KB-i17	KB-il7 Dup	KB-i18	KB-il8 Dup	KB-i19	10 St. 25 C	er II Residential Ch	r II Non-Residenti	ected compound exc

Table 6a Surface Soil Analytical Results for VOCs (mg/kg) Former General Motors Corporation Allison Gas Turbine Division, Plant 10

Indianapolis, Indiana IDEM VRP #6991004 KERAMIDA Project No. 2829E

Health Evaluation by Office of Environmental Response, July 1996.

Indiana Department of Environmental Management Voluntary Remediation Program Resource Guide, Appendix F Tier II Cleanup Goals-Human

NA = Not Applicable *cis-1,2-Dichloroethene results are combined *cis-1,2-Dichloroethylene and trans-1,2-Dichloroethene results are combined

VOCs = Volatile Organic Compounds Samples analyzed using EPA SW-846 Method 8260 mg/kg = milligrams per kilogram

²³Calculated using surrogate toxicity values and Tier II equations.

⁵³ Source: EPA Region 3 Risk-Based Concentration Table - October 1998 Update.

2-Нехвиопе	<0.060	<0.061	<0.053	<0.056	<0.056	<0.056	<0.053	<0.054	<0.059		NA		NA	
Ethyl methacrylate	<0.012	<0.012	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.012		NA		NA	
EtpAjpeuxeue	<0.0060	<0.0061	<0.0053	<0.0056	<0.0056	<0.0056	<0.0053	<0.0054	<0.0059		1,000		1,000	
ensqorqoroldəid-E,1-sasrt	090000	<0.0061						<0.0054	<0.0059		NA		NA	
ens-qorqorofd-f.,1-eis	<0.0060						<0.0053	<0.0054	<0.0059		NA		NA	
	0	<0.0061	<0.0053		<0.0056		<0.0053	<0.0054	<0.0059		1,000(2)		1,000-7	
2,2-Dichloropropane	<0.000.0>	<0.0061		<0.0056				<0.0054	<0.0059		NA		NA	
9naqorqorohid-£,1	<0.00000>	<0.0061	<0.0053		<0.0056		<0.0053	<0.0054	<0.0059		NA		NA	
Discopropanc	<0.0060	1900'0>	<0.0053	<0.0056	<0.0056	<0.0056	<0.0053	<0.0054	<0.0059		NA		NA	
enedisoroldsid-2,1-anert			<0.0053	<0.0056	<0.0056	<0.0056	<0.0053	<0,0054	<0.0059		1,000 ⁽²⁾		1,000(2)	
cis-1,2-Dichloroethylene	<0.0060	<0.0061	<0.0053	<0.0056	<0.0056	<0.0056	<0.0053		<0.0059		1,000		1,000	
9n9lydi9coold3iG-1,1	0900'0>	<0.0061	<0.0053	<0.0056	<0.0056		<0.0053		<0.0059	The second second	1.07		0.15	
J.2-Dichloroethane	<0.0000>	<0.0061	<0.0053	<0.0056	<0.0056	<0.0056	<0.0053	<0.0054	<0.0059	No. of London	7.03		5.27	
J.I.Dichloroethane	<0.0000>	<0.0061	<0.0053	<0.0056	<0.0056	<0.0056	<0.0053	<0.0054	<0.0059		1.000		973.47	
trans-1,4-Dichloro-2- butene	<0.060	<0.061	<0.053	<0.056	<0.056	<0.056	<0.053	<0.054	<0.059		NA		NA	
Lab Sample No.	293160	293308	293163	293168	293303	293304	293305	293306	293307					canup Goal
Sample Depth (feet)	0-2	0-2	0-2	1.5-2	0-2	0-2	0-2	0-2	0-2		ce Soil ⁽¹⁾		Surface Soil ⁽¹⁾	VRP Tier II Non-Residential Cle
Date Sampled	5/16/2001	5/18/2001	5/16/2001	5/16/2001	5/18/2001	5/18/2001	5/18/2001	5/18/2001	5/18/2001		II Residential Cleanup Goals Surface Soil ⁽¹⁾	The same of the sa	I Non-Residential Cleanup Goals Surface Soil(1)	ed compound exceeds the VRP Tier II Non-Residential Cleanup Goal occurrenced extredistive VRP Tier II Residential Cleanup Goal
Sample No.	KB-i13	KB-i14	KB-i15	KB-i16	KB-i17	KB-i17 Dup	KB-i18	KB-i18 Dup	KB-i19		II Residential C		II Non-Resident	cted compound ex

Table 6a Surface Soil Analytical Results for VOCs (mg/kg) Former General Motors Corporation Allison Gas Turbine Division, Plant 10

Indianapolis, Indiana IDEM VRP #6991004 KERAMIDA Project No. 2829E

VOCs = Volatile Organic Compounds
Samples analyzed using EPA SW-846 Method 8260
mg/Kg = milligrams per kilogram
NA = Not Applicable
"cis-1,2-Dichoroethylene and trans-1,2-Dichloroethene results are combined
"Indiana Department of Environmental Management Voluntary Remediation Program Resource Guide, Appendix F Tier II Cleanup Goals-Human Health Evaluation by Office of Environmental Response, July 1996.

2) Calculated using surrogate toxicity values and Tier II equations.

⁽³⁾Source: EPA Region 3 Risk-Based Concentration Table - October 1998 Update.

Table 6a - Surface Soil - VOCs Page 3 of 5

Sample No.	KB-i13	KB-i14	KB-i15	KB-i16	KB-i17	KB-it7 Dup	KB-i18	KB-i18 Dup	KB-i19	The second second	r II Residential	r II Non Decide	ected compound o	served commonned
Date Sampled	5/16/2001	5/18/2001	5/16/2001	5/16/2001	5/18/2001	5/18/2001	5/18/2001	5/18/2001	5/18/2001	The same of the sa	II Residential Cleanup Goals Surface Soil ⁽¹⁾	II Non Desidential Cleanus Goals Surface Soil(1)	eted compound exceeds the VRP Tier II Non-Residential Cleanup Goal	and commercial accomplation VDD Then II Designated Cleanus Good
Sample Depth (feet)	0-2	0-2	0-2	1.5-2	0-2	0-2	0-2	0-2	0-2	STATE OF THE PERSON NAMED IN	ace Soil(1)	Surface Coil(I)	Il Non-Residential C	II Decidential Chemi-
Lab Sample No.	293160	293308	293163	293168	293303	293304	293305	293306	293307				Jeanup Goal	in Coast
Hexachlorobutadiene	<0.0060	<0.0061	<0.0053	<0.0056	<0.0056	<0.0056	<0.0053	<0.0054	<0.0059		8.21	1 78	0.77	
lodomethane	<0.012	<0.012	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.012		NA	42		
Feoblopy (September 1997)	<0.0060	<0.0061	<0.0053	<0.0056	<0.0056	<0.0056	<0.0053	<0.0054	<0.0059		1,000(2)	647(2)		
-lsopropyltoluene	<0.0060	<0.0061	<0.0053	<0.0056	<0.0056	<0.0056	<0.0053	<0.0054	<0.0059		1,000(2)	1 000(2)	none -	
Methylene chloride	<0.030	0.037	<0.026	<0.028	0.036	0.034	0.034	0.027	<0.029		85.3(2)	816(2)		
Methyl Ethyl Ketone	<0.060	<0.061	<0.053	<0.056	<0.056	<0.056	<0.053	<0.054	<0.059		1,000	1 000	COOK!	
Methyl(tert) butyl ether (MTBE)	<0.012	<0.012	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.012		0.35	95	200	
4-Methyl-2-pentanone (MBK)	<0.050	<0.051	<0.053	<0.056	<0.056	<0.056	<0.053	<0.054	<0.059		1,000	1 000	2000	
Уарћгћајепе	<0.0060	<0.0061	<0.0053	<0.0056	<0.0056	<0.0056	<0.0053	<0.0054	<0.0059		10,000	10,000	and and	
Propylbenzene	<0.00060	<0.0061	<0.0053			<0.0056	<0.0053	<0.0054	<0.0059		1,000(2)	1 000(2)	anatr .	
Styrene	<0.0060	<0.0061	<0.0053	<0.0056	<0.0056	<0.0056	<0.0053	<0.0054	<0.0059		NA	410 000 ⁽³⁾	2000000	
1,1,1,2-Tetrachloroethane	<0.0060	<0.0061	<0.0053	<0.0056	<0.0056	<0.0056	<0.0053	<0.0054	<0.0059		24.62	75.01		
onsdieorochlorecthane	<0.0060	<0.0061	<0.0053	<0.0056	<0.0056	<0.0056	<0.0053	<0.0054	<0.0059		3.20	75.41		
Tetrachloroethylene	090000>	1900'0>	<0.0053	<0.0056	0.01	000	<0.0053	<0.0054	<0.0059		12.56	101 23		
Toluene	<0.0000>	<0.0061	<0.0053	<0.0056	<0.0056	<0.0056	<0.0053	<0.0054	<0.0059		1,000	1.000		

Table 6a
Surface Soil Analytical Results for VOCs (mg/kg)
Former General Moiors Corporation
Allison Gas Turbine Division, Plant 10
Indianapolis, Indiana
IDEM VRP #6991004
KERAMIDA Project No. 2829E

VOCs = Volatile Organic Compounds Samples analyzed using EPA SW-846 Method 8260

mg/kg = milligrams per kilogram
NA = Not Applicable
*cis-1,2-Dichloroethylene and trans-1,2-Dichloroethene results are combined

Indiana Department of Environmental Management Voluntary Remediation Program Resource Guide, Appendix F Tier II Cleanup Goals-Human Health Evaluation by Office of Environmental Response, July 1996.

(2) Calculated using surrogate toxicity values and Tier II equations.

⁽³⁾ Source: EPA Region 3 Risk-Based Concentration Table - October 1998 Update,

Table 6a - Surface Soil - VOCs Page 4 of 5

TADJE DA	Surface Soil Analytical Results for VOCs (mg/kg)	Former General Motors Corporation	Allison Gas Turbine Division, Plant 10	Indianapolis, Indiana	IDEM VRP#6991004	KERAMIDA Project No. 2829E	

Table 6a

Xylenes, Total	<0.0060	<0.0061	<0.0053	<0.0056	<0.0056	<0.0056	<0.0053	<0.0054	<0.0059		1,000	1,000
Vinyl chloride	<0.012	<0.012	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.012		0.034	0.02
Vinyl acetate	<0.012	<0.012	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.012		NA	NA
ənəxnədiyitəmirT-2,E,1	0900'0>	<0.0061	<0.0053	<0.0056	<0.0056	<0.0056	<0.0053	<0.0054	<0.0059		1,000(2)	435(2)
anəsnədlydəminT-4,2,1	<0.00000>	<0.0061	<0.0053	<0.0056	<0.0056	<0.0056	<0.0053	<0.0054	<0.0059		1,000(2)	1,000(2)
onsqorqoroldsirT-E,S,1	0900'0>		<0.0053	<0.0056	<0.0056	<0.0056	<0.0053	<0.0054	<0.0059		NA	NA
Trichlorofluoromethan	0	1900.0>	<0.0053	>0.0056	9500.0>	9500.0>	<0.0053	<0.0054	<0.0059		1,000(2)	1,000(2)
Trichloroethylene	0	<0.0061	0.023	0.11	0.7	0.49	0.1	0.13	0.034	NI NI NI NI NI NI NI NI NI NI NI NI NI N	58.18	24.97
1,1,2-Trichloroethane	0		<0.0053	<0.0056	<0.0056	<0.0056	<0.0053	<0.0054	<0.0059		11.23	22.74
onstheorother-I.i.i.i.	0	Г	Г		<0.0056		<0.0053		<0.0059		1,000	1,000
-trichlorobenzene	0			<0.0056	<0.0056	<0.0056	<0.0053	<0.0054	<0.0059		2,700	10,000
anaxnadoroldairT-E,2,1	0	<0.0061		<0.0056	<0.0056		<0.0053	<0.0054	<0.0059		NA	NA
Lab Sample No.	293160			293168	Γ		293305		293307			
Sample Depth (feet)	0-2	0-2	0-2	1.5-2	0-2	0-2	0-2	0-2	0-2		ce Soil ⁽¹⁾	Surface Soil ⁽¹⁾
Date Sampled	5/16/2001	5/18/2001	5/16/2001	5/16/2001	5/18/2001	5/18/2001	5/18/2001	5/18/2001	5/18/2001		Tier II Residential Cleanup Goals Surface Soil(1)	lier II Non-Residential Cleanup Goals Surface Soit ⁽¹⁾
Sample No.	KB-i13	KB-i14	KB-i15	KB-i16	KB-i17	KB-i17 Dup	KB-i18	KB-i18 Dup	KB-i19		er II Residential C	er II Non-Resident

VOCs = Volatile Organic Compounds
Samples analyzed using EPA SW-846 Method 8260
mg/8g = milligamus per Rilogram
NA = Not Applicable
*cis-1,2-Dichlorochylene and trans-1,2-Dichlorochene results are combined

³ Indiana Department of Environmental Management Voluntary Remediation Program Resource Guide, Appendix F Tier II Cleanup Goals-Human

⁽³⁾ Source: EPA Region 3 Risk-Based Concentration Table - October 1998 Update Health Evaluation by Office of Environmental Response, July 1996. (2) Calculated using surrogate toxicity values and Tier II equations.

Table 6a - Surface Soil - VOCs Page 5 of 5

Table 6b - Surface Soil - PAHs

Page 1 of 1

Pyrene	3:1	2.6	-0.39	-0.38	00.00	<0.39	2.4	<0.37	<0.38	<0.36	0.57	<0.38	<0.38	<0.39	<0.40	65.0	<0.37	<0.37	<0.37	<0.35	<0.35	<0.39	8 100	201100	10,000	ef	e	re)N	10	Э		3	,(
Phenanthrene	1.3	2.1	<0.30	I	I	<0.39	FI					<0.38				<0.35		<0.37	<0.37	100		<0.39	950(3)	707	260(3)									
Naphthalene	<0.35	<0.39		T	I	T	<0.39					<0.38				<0.35		<0.37	<0.37		<0.35	<0.39	10.000	10,000	10,000									
Indeno (1,2,3-ed)	0.89	59	-0.30	I		<0.39	0.72			<0.36				<0.39		0.6	<0.37	<0.37	<0.37	<0.35	<0.35	<0.39	000	0.00	79.45									
Fluorene	<0.35	<0.39	020	0 30	<0.38	<0.39	<0.39	<0.37	<0.38	<0.36	<0.38	<0.38	<0.38	<0.39	<0.40	<0.35	<0.37	<0.37	<0.37	<0.35	<0.35	<0.39	000 01	10,000	10,000									
Fluoranthene	3.2	22.8	02.0	60.00	<0.38	<0.39	2.7	<0.37	<0.38	<0.36	0.43	<0.38	<0.38	<0.39	<0.40	0.45	<0.37	<0.37	<0.37	<0.35	<0.35	<0.39	071.0	7,100	10,000									
Dibenzo (a,h) anthracene	<0.35	<0.39	0.00	50.39	<0.38	<0.39	<0.39	<0.37	<0.38	<0.36	<0.38	<0.38	<0.38	<0.39	<0.40	<0.35	<0.37	<0.37	<0.37	<0.35	<0.35	<0.39	0.66	0.00	7.95									
Сргузепе	DI STATE OF THE PARTY OF THE PA	TO COMPANY	0.30	50.39	<0.38	<0.39	170	<0.37	<0.38	<0.36	0.43	<0.38	<0.38	<0.39	<0.40	9'0	<0.37	<0.37	<0.37	<0.35	<0.35	<0.39	07.69	87.01	7,945.21									
Benzo (k)		590	02.0	I	<0.38		0.88		<0.38		0.49					0.87	<0.37			<0.35		<0.39	0.00	9.11	794.52									
Benzo (ghi) perylene	70.35	020	60.00	<0.39	<0.38	<0.39	<0.39	<0.37	<0.38	<0.36	0.41	<0.38	<0.38	<0.39	<0.40	<0.35	<0.37	<0.37	<0.37	<0.35	<0.35	<0.39	10	1,620	10,000 ⁽²⁾									
Benzo (b)		0.0	0.00	<0.39	<0.38	<0.39	2.8	<0.37	<0.38	<0.36	8'0	<0.38	<0.38	<0.39	<0.40	1.9	<0.37	<0.37	<0.37	<0.35	<0.35	<0.39	000	0.88	79.45									
Benzo (a) pyrene				I	<0.38		1.6		<0.38		19.0			<0.39		96.0	<0.37	<0.37	<0.37	<0.35	<0.35	<0.39		0.66	7.94									
Benzo (a) anthracen		1 3		<0.39	<0.38	<0.39	1.5	<0.37	<0.38	<0.36	<0.38	<0.38	<0.38	<0.39	<0.40	0.41	<0.37	-0.37	<0.37	<0.35	<0.35	<0.39		0.88	79.45									
anthracene	10.00	50.33	2070	<0.39	<0.38	<0.39	<0.39	<0.37	<0.38	<0.36	<0.38	<0.38	<0.38	<0.39	<0.40	<0.35	<0.37	200	<0.37	52.0>	<0.35	<0.39		10,000	000'01									
yceusbytyklene	20.00	CU.35	<0.39	<0.39	<0.38	<0.39	<0.39	<0.37	<0.38	<0.36	<0.38	<0.38	<0.38	<0.39	<0.40	0.4	<0.37	70.37	<0.37	70.35	<0.35	<0.39		5,400 ¹²³	4,570(0)									
уссиярирене	2000	50.00	<0.39	<0.39	<0.38	<0.39	<0.39	<0.37	<0.38	<0.36	<0.38	<0.38	<0.38	<0.39	<0.40	<0.35	-037	-0.37	40 37	-0.35	<0.35	<0.39		10,000	10,000					ion			Julia	GI-DI
Lab Sample	000000	293129	293131	293132	293135	293137	293139	293144	293147	293149	293152	203155	293157	293160	203308	293163	202168	202303	293304	393305	203306	293307	No. of the last			tial Cleanup Goal	Cleanup Gost		ole	intary Remediati	soals-Human	rations.	others and Acres	WHITE STATE OF THE PARTY OF THE
Sample Depth	(1000)	0-5	0-5	0-5	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0.0	0-2	0.2	0.0	15.0	0.0	0.0	0.0	0.0	0-2		Surface Soil ⁽¹⁾	rier II Non-Residential Cleanup Goals Surface Soil*13	compound exceeds the VRP Tier II Non-Residential Cleanup Goal compound exceeds the VRP Tier II Residential Cleanup Goal	Ther II Residential	arbons Method 8310	NA = Not Applicable	(1) Indiana Department of Environmental Management Voluntary Remediation	Program Resource Guide, Appendix F Tier II Cleanup Goals-Fluman	Calculated using surrogate foxicity values and Tier Hequations.	O or ver it is	Thank hard manner at the second
Pate Comples	Date Sampled	5/15/2001	5/15/2001	5/15/2001	5/15/2001	5/15/2001	5/15/2001	5/15/2001	5/16/2001	5/16/2001	5/16/2001	5/16/2001	5/16/2001	5/16/2001	5/18/2001	100779175	5/16/2001	27102001	5/10/2001	5/10/2001	5/18/2001	5/18/2001		Fier II Residential Cleanup Goals Surface Soil®	lential Cleanup Go	d exceeds the VRP	is is below the VRI	PAHs = Polynuclear Aromatic Hydrocarbons Samples analyzed using EPA SW-846 Method 8310	mg/kg = micrograms per kilogram	vent of Environment	ce Guide, Appendix	surrogate foxicity's	Santingano and Comp	of addition I married to the reason to
N	ampie No.	KB-28	KB-29	KB-29 Dup.	KB-30	KB-31	KB-32	KB-33	KB-34	KB.35	KB.36	KB.37	VB 39	KR.113	VD 114	KBils	Alt d'a	ND-EIG	VD :17 Due	VD 210	VB 118 Dun	KB-i19		r II Residentia	r II Non-Resid	ected compound ex	acted compoun	Hs = Polynucle uples analyzed a	kg = microgran	ndiana Departm	rogram Resour	alculated using	and the same	NAME OF REPORTS OF

Table 6b
Surface Soil Analytical Results for PAHs (mg/kg)
Former General Moiors Corporation
Allison Gas Turbine Division, Plant 10
Indianapolis, Indiana
IDEM VRP #6991004
KERAMIDA Project No. 2829E

Table 6c - Surface Soil - Metals Page 1 of 1

Samule No.	Date Sampled	(feet)	Lab Sample No.	Antimony	Total Arsenic	Total Arsenic Total Barium	Beryllium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel S	Selenium	Silver	Thallium	Zinc
GP-1	12/19/1996		W6120376-01	V	<40	NA	<0.50	2.0	5.5	6	211 <	<0.25	> 1.7			20	
GP-2	12/19/1996	0.2	W6120376-03	<20	<40	NA	<0.50	179	1,600	510	> 040	<0.25	28 <			20	18
GP-3	12/19/1996	0-2	W6120376-05	<20	<40	NA	19:0	<2.0	91	21	> 6	<0.25	21 <	<20 <		200	
GP-4	12/19/1996	0-2	W6120376-07	<20	<40	NA	<0.50	<2.0	01	12	> 01	<0.25	> 7			070	
GP-5	12/19/1996	0-2	W6120376-09	<20	<40	NA	<0.50	<2.0	2.6	7.4	13 <	<0.25	8.5			20	X.
GP-6	12/19/1996	0-2	W6120376-11	<20	<40	NA	<0.50	<2.0	17	PER PER PER	> 9.8	<0.25	17 <		<2.0	<20 <20	
KB-28	5/15/2001	0-2	293129	ZA	NA	NA	NA	<0.54	8.3	NA	29 I						V.A
KB-29	5/15/2001	0-2	293131	NA	NA	NA	NA	<0.59	[3]	NA	8.6	NA NA					NA.
KB-29 Dup.	5/15/2001	0.5	293132	NA	NA	NA	NA	<0.60	17		N 8.4>						NA
KB-30	5/15/2001	0-2	293135	NA	NA	NA	NA	0.97	The state of the s	NA	1001						NA.
KB-31	5/15/2001	0-2	293137	NA	NA	NA	NA	09:0>	13		<4.8 N	NA NA					NA.
KB-32	5/15/2001	0.5	293139	NA	NA	NA	NA	<0.59	15	NA	38						NA.
KB-33	5/15/2001	0-2	293144	NA	NA	NA	NA	<0.56	91	NA	70 3						NA.
KB-34	5/16/2001	0-2	293147	NA	NA	NA	NA	<0.57	11	NA	18 3	NA N	NA NA	NA NA			NA
KB-35	5/16/2001	0-2	293149	NA	NA	NA	NA	<0.55	81	NA	150						NA.
KB-36	5/16/2001	0-2	293152	NA	NA	NA	NA	1.7	27	NA	940						NA.
KB-37	5/16/2001	0.5	293155	NA	NA	NA	NA	<0.57	15		<4.5 N						NA.
KB-38	5/16/2001	0-2	293157	NA	NA	NA	NA	<0.57	13	NA	13						NA.
KB-i13	5/16/2001	0-2	293160	NA	NA	NA	NA	<0.60	14								NA
KB-i14	5/18/2001	0-2	293308	NA	NA	NA	NA	19:0>	17								V.A
KB-il5	5/16/2001	0.2	293163	NA	NA	NA	NA	<0.53									NA.
KB-i16	5/16/2001	1.5-2	293168	NA	NA	NA	NA	<0.56	9.8								NA.
KB-i17	5/18/2001	0-2	293303	NA	NA	NA	NA	<0.56	8.6								NA
KB-i17 Dup.	5/18/2001	0-2	293304	NA	NA	NA	NA	<0.56	8.8								VZ.
KB-i18	5/18/2001	0-5	293305	NA	NA	NA	NA	<0.53	THE COUNTY		<4.3 N				NA		V.
KB-i18 Dup.	5/18/2001	0-2	293306	NA	NA	NA	NA	<0.54	10								VV.
KB-i19	5/18/2001	0-2	293307	NA	NA	NA	NA	<0.60	91	1	1						NA.
ier II Resident	Tier II Residential Cleanup Goals Surface Soil	Surface Soil ⁽¹⁾		NA	81	10,000	0.5	135	1,350	6,990(3)	400 (4)	16.2	5,400	1,350	1,350	NA	×
			THE RESERVE OF THE PARTY OF THE	THE REAL PROPERTY.													
ier II Non-Res	Tier II Non-Residential Cleanup Goals Surface Soil ⁽¹⁾	Goals Surface Soi	I(1)	NA	612	10,000	13.49	1,020	10,000	378,000 ⁽³⁾	1,000 (4)	122.4	10,000	10,000	10,000	NA	YZ Z
ommon Backs	Common Background Ranges (2)			NA	1.0 - 40	100 - 3,500	NA	0.01 - 70	5.0 - 3,000	NA	2-200 0	0.01 - 4.15	NA	0.1 - 2.0	0.1 - 50	NA	Y.
elected compou	and exceeds the VRF	P Tier II Non-Resid	exceeds the VRP Tier II Non-Residential Cleanup Goal														
etected compos	and exceeds the VRI	exceeds the VRP Tier II Residential Cleanup Goal	Cleanup Goal														
elected compos	and is below the VR	P Tier II Residentia	1 Cleanup Goal														

Table 6c
Surface Soil Analytical Results for Metals (mg/kg)
Former General Motors Corporation
Allison Gas Turbine Division, Plant 10

KERAMIDA Project No. 2829E Indianapolis, Indiana IDEM VRP #6991004

nigage – minigamic per acception and a series represented that a series of the series

⁽²⁾ Source: James Diagun. The Soil Chemistry of Hazardous Materials Table 3.1 Native Soil Concentration of Various Elements: p.229, 1998

⁽⁹⁾ Calculated using surrogate toxicity values and Tier II equations.

⁽⁴⁾ IDEM VRP Interoffice Memo dated on January 26, 1998.

	2-Chloroluene 4-Chloroethyl vinyl ether 2-Chloroethyl vinyl ether	NA.	NA NA <0.010	NA NA <0.	NA NA <0.	NA NA	NA NA	< 0.0055 < 0.0055 < 0.0055	< 0.0056 < 0.0056 < 0.05	<0.005 <0.005 <0.0	<0.005 <0.005 <0.0	<0.005 <0.005 <0.0	2.5 2.6 2.0	CO.277 CO.277 C.	102 1102	<0.054 <0.054 <0.5	<0.270 <0.270 <2.3	<0.552 <0.552 <5.3	<0.0060 <0.0060 <0.0	<0.0052 <0.0052 <0.	<0.0055 <0.0055 <0.0	<0.0057 <0.0057 <0.0	<0.0059 <0.0059 <0.0	<0.0059 <0.0059 <0.	<0.0008 <0.0058 <0.	0 000 00 000 00	<0.0054 <0.0054 <0.0	<0.0061 <0.0061 <0.0	<0.0062 <0.0062 <0.0	<0.0061 <0.0061 <0.0	<0.0000 <0.0060 <0.0	40.0000 <0.0000 <0.0000	<0.000 <0.000 <0.000	NA NA NA	
	Chloromethane (Methyl	<0.010	<0.010	<0.010	<0.010	00000	<0.010	5 < 0.0055	6 < 0.0056	<0.010	<0.010	<0.010	6.4	CU.354	CO 32	<0.109	<0.550	<1.1	6110.0>	40.0104	CO.0109	7 < 0.0114	<0.012	<0.012	20007	20013	40.011	<0.012	<0.012	<0.012	<0.012	<0.012	200012	NA	
	Съдогоботт	9	<0.005	<0.005	<0.0005	20000	<0.005	55 < 0.005	56 < 0.005	<0.020	0.0020	<0.020	-11	A A D D A 3	<0.005	81602	00'1>	<2.21	900.0> 6	A <0.005	09 <0.005	4 <0.0057	<0.024	<0.024	<0.023	7000	<0.022	<0.024	<0.025	<0.024	<0.024	<0.024	<0.024	0 2.082	
	Събогоедъяпе	(O)	<0.010	<0.010	<0.010	71000	<0.010	055 < 0.00	056 < 0.00	005 <0.010	00.001	00.01C	6.4	11 <0.039	CO 02	Cd Co 100	70 <0.550	52 <1.1	110'0> 090	352 <0.010	10.05 SEC.010	110.0> 720	210.0> 650	120 <0.012	138 <0.012	21007 694	0.054 <0.011	1000 <0.012	062 <0.012	061 <0.012	960 <0.012	000 <0.012	090 (<0.012	A 1,000	No. of the last
	Chlorobenzene	Z	c0.005 NA	NA 200	0.005 NA	0000 NA	1	0.0055 < 0.0	0.056 < 0.0	0.005 <0.00	000> <0.005	0.005 <0.005	5 <2.6	2007	11 001	90 UP 190	270 <0.27	552 <0.55	0000 <0.00	0052 <0.00	0005 <0.00	00.057 <0.00	00'0> 6500	0000 6500	20,05 80,00	2000	<0.0054 <0.00	0.0061 <0.00	<0.0062 <0.00	00'0> 1900	0000 <0.00	0000 40.00	0000 <0.00	11.1 ⁽²⁾ NA	
	Carbon tetrachloride	0	<0.005 <0.0	0.005 <0.0	0000	0000	T	0.0055 < 0.	0.0056 < 0.	0.005 <0.0	0.005 <0.0	0.005 <0.0	2.6	J.27.1 <0.	0111	1054 500	3.270 <0.	0.552 <0.	09000	0,0052 <0.0	0.0055 <0.0	0.0057 <0.0	0.0059 <0.0	0.0059 <0.0	3,0056 <0.	07 69000	<0.0054 <0.0	Y	<0.0062 <0.0	0.0061 <0.0	0.0060 <0.0	00000	00000	NA II	
	Carbon disulfide	172	<0.005 <	<0.005	C0.005	T	Y	< 0.011 <	< 0.011 <	<0.005 <	<0.005	> 500.0>	0.0	77700	1100	CO 054	<0.270 <	c0.552 <	<0.00000 <	CO.0052 <	d 00055	<0.0057 <	> 6500.0>	<0.0059 <	000000	0 00067	<0.0054 <		<0.0062 <	<0.0061 <	<0.00000 <	C0.00000 <	c0.0000 <0.	182(2)	
	ert-Butylbenzene		NA	NA	NA NA	NA	NA	5<0.0055	9500.0 > 9	<0.005	<0.005	<0.005	<2.6	117705	11.0	0.755	<0.270	1.99	0900'0>	<0.0052	<0.0005	<0.0057	<0.0059	<0.0059	800000	200000	<0.0054	-	<0.0062	<0.0061	<0.00060	090000	<0.0000	22.0(1)	
	sec-gaţAjpenxene	NA	N.A.	NA.	YZ S	NA NA	NA NA	55 < 0.0055	9500.0 > 95	8	<0,005	<0.005		CD,277	2011	A A	6.78	1.72	0 < 0.0060	2 <0.0052	\$ 60.0034	7 <0.0057	6500.05 6	6500020	8 (0,000 8	CO0000 00 C	4 <0.0054		<0.0062	1 <0.0061	090000>	0 00000	0 <0.0000	30.100	
	Bromide) n-Butylbenzene	N.A.	0 NA	O NA	NA O	NA O	O NA	055 < 0.005	056 < 0.003	0 <0.005	0 <0.005	0 <0.005	-	4 <0.277	1102	00	0 <0.270	S	19 <0.006	.0104 <0.005	20002	14 <0.005	2 <0.005	2 <0.005	2 <0.000	20000	1 <0.0054	2 <0.006	2 0,000	2 <0.006	2 <0.006	2 <0.000	2 <0.000	A 33.5 ⁽²⁾	
3	Bromoform Bromomethane (Methyl	0.0>	JS <0.010	005 <0.01	010.010	000 000		055 < 0.0055	0.0 > 0.0	010.0> 50	005 <0.010	05 <0.010	Ť	11 <0.0334	20,022	Ť	<0.0	52 <1.1	Ť	9 9	7 8	1	0.059 <0.01	8	00058 <0.012	1	Ť		062 <0.012	061 <0.012	000 <0.01		0000 <0.012	NA NA	
ct No. 2829		8	<0.003	<0.	9 9	9 9	9 8	5 × 0	,	<0.005	0.0>	<0.005	9.5	17702	20.0	0.00	<0.270	<0.5	0.0>	2 <0.005	5 <0.0	7 <0.005	0.0> 6	6 <0.0059	S CU.0058	000	8		2 <0.0062	1 <0.006	0.0>	0 <0.0060	0 <0.0		
KERAMIDA Project No. 2829E	snerftsmoroldzibemor8		<0.003	<0.005	<0.000	20000	<0.005	0055 < 0.005	36 < 0.0056	5 <0.005	S <0.00	00'0> 9	42.6	40.27	1000	2000	0 <0.270	2 <0.55	00'0> 09	52 <0.000	55 <0.00	57 <0.00	59 <0.00	59 <0.00	58 <0.000	20000	54 <0.0054	900:0> 19	62 <0.0062	00:00	0000 <0.000	00000	00 <0.000	0.000389	
KERAN	Вготорепхепе Вготосілю готеграпе	NA	NA	NA	× 5	NA	NA	0055 < 0.00	00.0 > 9500	05 <0.00	00.0> <0.00	05 <0.005	<2.6	11 40.27	11 00 11	50 00 50	70 <0.27	52 <0.55	00.0> 090	0052 <0.00	0055 <0.00	057 <0.00	029 <0.00	0.0059 <0.0059	0.0058 <0.0058	-	<0.0054 <0.0054	-	<0.0062 <0.0062	-0.0061 <0.006	900	_	c0.0060 <0.0060	NA NA	
		Z		NA.	Y S	62	NA NA	5 <0.0	9 < 0.0	<0.005	<0.0>	<0.005	2.6	790	0.00	0.00	<0.270	<0.5	(P)	0.00	20.0	<0.005	0.0>	Ť				Ť	Ĭ	9	0	Ì		Н	
	Renzene	<0.005	<0.005	<0.005	<0.005	S0.005	<0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005	<2.6	11700	1100	2000	<0.270	<0.552	<0.0066	<0.005	<0.005	<0.0057	<0.0059	<0.005	<0.0052	S00000	<0.0054	<0.005	<0.0062	<0.0061	<0.0050	<0.0060	<0.00050	0.059	
	Acrylonitrile	В	NA	NA	NA	NA	NA	< 0.11	< 0.11	<0.25	<0.25	<0.25	<130	<15.9	24000	22	<13.0	<27.5	<0.0597	<0.0520	<0.0546	<0.0571	<0.290	<0.290	<0.290	CO.230	<0.270	<0.300	<0.310	<0.300	<0.300	<0.300	<0.300	NA	1
	Acrolein	NA	A	NA.	NA NA	200	NA	<0.11	<0.11	<0.25	<0.25	<0.25	<130	<13.9 -0.540	CU.347	0.30	<13.0	97.2>	<0.0597	0.0520	0.0546	<0.0571	<0.290	0.290	0.290	0.210	<0.270	<0,300	<0.310	<0,300	<0.300	<0.300	0.300	NA	
	усьериь					T	T	Π				00			9.59				П		00100		<0.120	<0.120	9	50.120						<0.120	0.27	22,793	
	Jab Sample No.		5120376-04 <0.020		W6120376-08 <0.020		W5090064-04 <0.020		T					328333 0334	T	328356				874742 00.					291938	T	291961		291963 <0.	291964 <0.120		291966 <0.	291967		
	Sample Depth				5-7 W6	1					14-16	18-20	4-6	8-9	0-0	8.9	10-12	8-9	12-14	14-16	14-16	14-16	2.4	4-6	9-0	0-1	13.5-14	4-6	3.4	9-#	2.4	2-4	2-4	urface Soil ⁽¹⁾	The same of the sa
	Date Sempled	12/19/1996	12/19/1996	12/19/1996	12/19/1996	12/19/1996	9/6/1995	3/1/2004	3/1/2004	5/2/2000	7/12/2000	7/17/2000	5/15/2001	9/17/2002	2002/11/6	0/17/2003	8/27/2002	9/18/2002	8/29/2003	8/29/2003	8/29/2003	8/29/2003	5/1/2001	5/1/2001	3/1/2001	5/1/2001	\$/1/2001	5/1/2001	5/1/2001	3/1/2001	5/1/2001	5/1/2001	3/1/2001	Tier II Residential Cleanup Goals Subsurface Soil®	
	Sample No.	GP.1	GP-2	GP-3	GP-4	S de la	HP-1	IW-1	IW-2	KB-17	KB-20	KB-24	KB-33	KB-40	KB-44	KB 46	KB-46	KB-47	KB-48	KB-49	KB-51	KB-51 DUP	KB-i1	KB-il	KB-12	NB-13	KB-14	KB-i5	KB-i6	KB-i6	KB-i7	KB-i8	KB-19	r II Residential C	

VOCS.= Volatile Organic Compounds mnyRg = milligramis per kilogram
Samples analyzed sing EPA SW4466 Method SSS9 Ns. No. Applicable
veis-1, 2D Coholovochiyon and turns-1, 2D Chiloroccubene results are combined
in Indiana Department of Environmental Management Voluntary Remodulion
Pengram Resource Golde. Appendix F Tier II Champy Goods-Human
Health Dealundon by Office of Environmental Response, July 1996.

Chalculated using armopate toxicity violates and Tier II Capation.

Source: EPA Region 3 Risk 3 Based Concentration Table - October 1998. Update.

Table 7a - Subsurface Soil - VOCs Page 2 of 12

2-Chloroethyl vinyl etl	<0.060	<0.057	<0.065	<0.057	<0.056	< 0.054	<0.240	< 0.260	< 0.052	<0.053	<0.010	<0.010	<0.010	<0.010	<0.050	<0.010	<0.010	<0.010	<0.010	< 0.055	< 0.058	<0.010	<0.010	<0.010	<0.010	00000	0100	0100	Y.	NA	NA.	NA.	×Z.		Z	Z	
+-Chlorotoluene	<0.0060	<0.0057	<0.0065	<0.0057	<0.0056	<0.0054	<0.024	<0.026	<0.0052	<0.0053	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.0055	< 0.0058	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	
2-Chlortoluene	<0.0000>	<0.0057	<0.0065	<0.0057	<0.0056	<0.0054	<0.024	<0.026	<0.0052	<0.0053	NA.	NA	YZ.	NA NA	YZ:	NA	NA	YZ.	NA	355	< 0.0058	NA	NA	YZ:	NA	V 2	N.A.	NA	NA.	YZ.	NA	YZ.	NA.		NA	NA	
Chloromethane (Meth Chloride)	<0.012	<0.011	<0.013	<0.011	<0.011	<0.011	<0.049	<0.051	<0.010	<0.011	<0.010	<0.010	<0.010	<0.010	<0.050	<0.010	<0.010	<0.010	<0.010	< 0.0055	< 0.0058	<0.010	<0.010	<0.010	CU.010	00000	0.010	0.010	YZ.	YZ.	NA.	×	NA.		NA	NA	
mrolorold)	<0.024	<0.023	<0.026	<0.023	<0.022	<0.022	260.0>	<0.100	<0.021	<0.021	<0.005	<0.005	<0.005	<0.005	<0.025	<0.000>	<0.000>	<0.005	<0.005	< 0.0055	< 0.0058	<0.005	<0.000>	<0.005	<0.000>	<0.005	20000	<0.005	NA	NA	NA	NA	NA.		2.082	20.33	
Chloroethane	<0.012	<0.011	<0.013	<0.011	<0.011	<0.011	<0.049	<0.051	<0.010	<0.011	<0.010	<0.010	<0.010	<0.010	<0.050	<0.010	<0.010	<0.010	<0.010	< 0.0055	< 0.0058	<0.010	<0.010	<0.010	<0.010	<0.010	0.000	0.010	NA	NA.	NA	Y'N	NA		1,000	1,000	
Chlorodibromonethu	<0.0060	<0.0057	<0.0065	<0.0057	<0.0056	<0.0054	<0.024	<0.026	< 0.0052	<0.0053	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.0055	< 0.0058	NA	NA	NA	NA	NA AZ	N.V.	NA NA	NA	NA	NA	NA	NA		NA.	NA.	
Chlorobenzene	<0.0000 co	<0.0057	<0.0065	<0.0057	<0.0056	<0.0054	<0.024	<0.026	<0.0052	<0.0053	<0.005	<0.005	<0.005	<0.005	<0.025	<0.000	<0.000>	<0.005	<0.005	< 0.0055	< 0.0058	<0.005	<0.005	<0.005	C00705	<0.005 c0.005	30000	500.00	NA.	Y'N	NA.	42	NA.		11.1(2)	803(2)	
Carbon tetrachloride	09	<0.0057	<0.0065	<0.0057	<0.0056	<0.0054	<0.024	<0.026	<0.0052	<0.00053	<0.005	<0.005	<0.005	<0.005	<0.025	<0.000>	<0.005	<0.005	<0.000>	< 0.0055	< 0.0058	<0.000>	<0.005	<0.005	<0.000	<0.005	20000	50000	NA	NA	NA	N.	NA.		NA	NA	
Shillusib nodus.	98	<0.0057	<0.0065	<0.0057	<0.0056	<0.0054	<0.024	<0.026	<0.0052	<0.0053	Ė						<0.005		<0.005		< 0.012	<0.005	<0.005	Ì		<0.005	T	T					NA.		182(0)	1,3000	
tert-Butylbenzene	25.5	<0.0057	<0.0065	<0.0057	<0.0056	<0.0054	<0.024	<0.026	<0.0052	6500	NA.							NA			8500				1	NA	T	T	T	T	T	T	T		22.00	868(2)	
acc-gat/Appensent	-	<0.0057	<0.0065	<0.0057	oc.0056	<0.0054	<0.024	<0.026	<0.0052 -	<0.0053 P		NA		NA	N.A.	NA NA	NA	NA NA	NA		< 0.0058		N.A			NA NA	T	T					47		30,192	725(2)	
n-Butylbenzene		<0.0057	<0.0065	<0.0057	<0.0056	<0.0054	<0.024	<0.026	<0.0052	<0.0053	NA	NA	NA	NA	NA	NA	NA	NA	NA.	_	< 0.0058	NA.	NA	NA	NA	NA	1	NA	NA	NA.	NA	NA.	N.	1	33.500	972(0)	
Bromomethane (Meth Bromide)	12	<0.011	<0.013	1110.05	<0.011	110.05	<0.049	c0.051	<0.010	110,05	010.0>	010.0>	010.0>	<0.010	<0.050	010.0>	<0.010	<0.010	<0.010	< 0.0055	< 0.0058	<0.010	010'0>	<0.010	010.05	00.010	0100	010.05	Т	NA.					NA	NA	
Вготогогт		<0.0057	<0.0065	<0.0057	>0.0056	<0.0054	<0.024	<0.025	<0.0052	<0.0053	<0.000>	<0.005	<0.000>	<0.005	<0.025	<0.005	<0.005	<0.000>	<0.005	< 0.0055	< 0.0058	<0.005	<0.005	<0.005	<0.005	<0.005 20.005	20000	20.005	NA	NA.	AN.	NA.	NA.		NA	NA	
udismoroldsipomorB	090000	<0.0057	<0.0065	<0.0057	<0.0056 <0.0056	<0.0054	<0.024	<0.026	<0.0052	<0.00053	<0.005	<0.005	<0.000>	<0.005	<0.025	<0.005	<0.000>	<0.000>	<0.005	< 0.0055	< 0.0058	<0.000>	<0.000>	<0.005	<0.000>	<0.0005	2000	50000	NA	NA	NA	NA.	N.A.		0.000389 ⁽²⁾	0.692(2)	
Bromochloomethans	9	<0.0057	<0.0065	Ė	<0.0056	<0.0054	<0.024	<0.026 <	<0.0062 <	<0.0053 <		NA:				0	NA.		NA *	_	8500		-	NA			T	T				NA	NA		NA	N	
Вготореплепе	99	<0.0057	<0.0065	<0.0057	9500.0>	<0.0054	<0.024	<0.026	<0.0052	<0.0053		NA	NA	NA	NA	NA	NA	NA	NA	10	< 0.0058		NA			NA NA	1	NA NA	NA	N.A.	NA	NA	NA.		NA	NA	
Renzene		<0.0057	<0.0065	<0.0057	<0.0056	<0.0054	<0.024	<0.026	c0.0052	<0.0053	<0.005	<0.005	<0.005	<0.005	:0.025	<0.005	50,005	50000	<0.005	< 0.0055	< 0.0058	<0.005	<0.005	<0.005	<0.000	<0.005 <0.005	20000	50,005	NA	NA	J.A.	SA.	NA.		0.059	4.77	
Acrylonitrile											¥	¥		Y	×	Ť	Ť	~	V			v	*	Y	Ť	¥ ,			-	-					NA	NA	
1	<0.3	<0.290	<0.320	<0.280	<0.280	<0.270	<1.20	<1.30	<0.260	<0.266	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.11	< 0.12	NA	NA	NA	NA	NA NA	100	NAN	N.A.	NA	NA	NA	NA			H	
Acrolein	<0.300	<0.290	<0.320	<0.280	<0.280	<0.270	<1.20	<1.30	<0.260	<0,260	NA	Y.	NA	NA	NA.	NA NA	NA	NA	NA	<0.11	< 0.12	NA	NA	Y.	NA.	YZ Z	N.A.	NA	NA	NA.	NA.	NA.	Y.		NA	NA	
Acetone	<0.120	<0.110	<0.130	c0.110	<0.110	<0.110	<0.480	<0.510	<0.100	<0.110	<0.020	<0.020	<0.020	<0.020	<0.100	<0.020	<0.020	0.020	6:074	< 0.11	< 0.12	<0.020	<0.020	<0.020	<0.020	<0.020 do 020	00000	00000	77	47	47	47	47		22.793	136.29	
Lab Sample No.						> 293170	293312 <					210	32		2.0		533		W7010365-02		1		W5070171-01		_	W5070142-03		7.	Т	T	I	T	NA				Float
	2	5	2	2	2	12	12	2	2	2	W50	W50	W50	W50	W50	W50	WSG	W70	W70	.50.	50.	W50	W50	W50	WSC	WSO	1000	10200	-	-	-	1	-			II(u)	or Change
Sample Depth (Feet)	2.4	2.4	2.4	10-12	10-12	8-10	8-10	8-10	8:10	8-10	8-10	18-20	8:10	18-20	13-15	28-30	18-20	3-5	8:10	11-13	13-15	13-15	48-50	18-20	38-40	13-15	40 60	63.64	2.4	8-9	4-6	8-9	14-16		urface Soil ⁽¹⁾	Subsurface Soi	O Non-Regident
Date Sampled	5/1/2001	5/16/2001	5/18/2001	5/16/2001	5/16/2001	5/16/2001	5/18/2001	5/18/2001	5/18/2001	5/18/2001	6/27/1995	6/28/1995	6/29/1995	6/29/1995	9/5/1995	9/5/1995	9/5/1995	1/23/1997	1/23/1997	3/1/2004	3/1/2004	7/10/1995	7/14/1995	7/11/1995	7/11/1995	7/11/1995	4/31/1007	1/31/1007	3/1004	3/1994	1/1004	1/1004	3/1994		Tier II Residential Cleanup Goals Subsurface Soil ⁽¹⁾	Tier II Non-Residential Cleanup Goals Subsurface Soil ⁽¹⁾	whethe VRD Ther
Sample No.	KB-i12	KB-it3	KB-i14	KB-i15	KB-i15 Dup	KB-i16	KB-ii7	KB-i17 Dup	KB-i18	611	MW-152	152	MW-154	MW-154	MW-155	155	MW-156	157	MW-158	173	MW-173	MW-200	MW-200	MW-201	MW-201	MW-202	200 300	MW-WZ	SB10-1	SB10-2	SR10-3	SB10-4	SB10-5		idential Clea	n-Residential	surround excee

Table 7a
Sabearface Soll Anniylein Results for VOCs (mg/kg)
Former General Moiers Corporation
Allication Gas Turbue Division, Plant 10
Indamapolis, Indiana
IDEM VRP #6991094
KERAMIDA Project No. 2829E

Table 7a - Subsurface Soil - VOCs Page 3 of 12

2-Chloroethyl vinyl ether	YZ.	Y.Y	NA.	NA	NA	<0.5	<0.5	<0.01	(0.0)	<0.01	<0.5	<0.01	<0.5	<0.01	<0.5	<0.5	<0.5	NA	001	VV	
4-Chlorotoluene	NA		NA.					ñ							NA.	NA	NA	N.V	W.	NA	
2-Chlorioluene	IA N	IA II	NA PA	NA	NA NA			NA		NA	NA.	NA.	NA.	NA NA	NA	NA	NA NA	413	90	NA	
Chloromethane (Methyl	IA. P	IA. I	NA.		NA.	<1.0 h		<0.01	<0.01	<0.01	<1.0	10.05	0.13	10.05	(1.0	0.15	CL.0	1/2	100	NA	
Chloroform	A	A	NA IN	NA N	NA N	<0.1	<0.1			<0.005	<0.1	<0.005	<0.1	<0.000>	<0.1	<0.1.0>	<0.1	2000	7007	20.33	
Chloroethane	NA. N	A	NA. N		NA N	<1.0	<0.15	> 10.0>	<0.01	< 10.05	0.1	<0.01	c1.0	<0.01	<1.0	<1.0	<1.0 <	1 000	-	1,000	
Chlorodibromemethane	N				-			<0.005	Ú	<0.000>),I	500	1	500		1		45	NA.	NA	
Chlorobenzene	Z	NA	NA NA	NA NA	NA NA	.0>	.0>	<0.005 <0	<0.005 <0	500	.0> 1.	<0.005 <0.	.1 <0.	<0.005 <0.	.0>	.0	1.0	123. 1.1		803(2)	
Carbon tetrachloride	NA		NA		NA	1 <0.	1 <0.	<0.000 <0		<0.005 <0.	1 <0.	<0.005 <0	1 <0.1	<0.005 <0	1 <0.	1 <0.	1 00.		1	× V	
Carbon disulfide	Z	N.	NA	NA	NA	9	0>	005 <00	005 <0.		0>	10	<0.1	0005 <00.	9	9	9	020		300%	
	×2	NA	NA	NA	NA	c0.1	<0.1	900	CD.(<0.005	<0.1	<0.005	c0.1	<0.0	<0.1	(O)	<0.1	an all		868(2) 1,3	
tert-Butylbenzene	Z.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1	-811	725(2) 868	
sec-gnţAjpenzene	KN.	NA	KN.	NA	NA	KZ.	NA	YZ.	NA.	KN.	XX	N.A.	YZ.	Y.Y	YZ.	NA	YZ.	D. or De	-111	Н	
n-Butylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	9.00	0.60	972(0)	
Bromomethane (Methyl Bromide)	N/N	N.N.	N.N.	N.N.	N.N.	<0.5	<0.5	<0.01	<0.01	10.0>	<0.5	<0.01	<0.5	< 0.01	<0.5	<0.5	<0.5	100	NA	NA	
рготогога	NA	NA	NA	NA	NA	<0.1	d).1	<0.005	<0.005	<0.005	<0.1	<0.005	40.1	<0.005	<0.1	<0.1	<0.1	100	e e	NA	
snadtsmoroldsibomor8	100	NA.	NA	NA.	NA	<0.1	40.1	<0.005	<0.005	<0.005	<0.1	<0.005	<0.1	<0.005	<0.1	<0.1	<0.1	a secretarial Contraction	0,000,0389	0.692(2)	
Bromochloromethane	NA	NA.	V	A	A	V	A	V	V	V	V.	A	(A)	A	NA.	(A	(A:	****	NA	NA	
Вготореплепе		NA N																	NA	NA	
Renzene		63			<0.005			<0.005				30		8	<0.1		40.1	0.000	6600	4.77	
усідэвінде	NA	NA NA	NA	NA	NA	9	9	10:0>	10:0>	10:0>	9	10:0>	9	10.0>	9	5	9		NA	NA	
Acrolein			NA		Y.Y	50	5	<0.01		<0.01		10,0>		<0.01		9			NA	NA	
ycetone	<6.3		<0.01		<0.01	0		<0.02				02		12	2		2	-	22.793	136.29	
Lab Sample No.		NA				69803			90869		69873		69875		69945	96669	69947				Scanup Geal
Sample Depth (feet)		3-5	8-10	8-10	8-10	13-15	13-15	23-30	13-15	23-25	8-10	28-30	8-10	23-25	8-10	3.5	8-10	(Dr	urface Soil"	Subsurface Soil ⁽¹⁾	Il Nan Residential C
Date Sampled	9/1992	9/1992	9/1992	9/1992	9/1992	6/2/1993	6/2/1993	6/2/1993	6/2/1993	6/2/1993	6/3/1993	6/3/1993	6/3/1993	6/3/1993	6/4/1993	6/4/1993	6/4/1993		Tier II Residential Cleanup Goals Subsurface Soil	Tier II Non-Residential Cleanup Goals Subsurface Soil(1)	uneds the VRP Tier II N
Sample No.	SB-132	SB-133	SB-134	SB-135	SB-135 Dup	SB-145	SB-145 Dup	SB-145	SB-146	SB-146	SB-147	SB-147	SB-148	SB-148	SB-149	SB-150	SB-150		Residential C	I Non-Resident	nd compound en

Table 7a
Subsurface Soil Analyticia [Results for VOCs (mg/kg)
Former General Agators Corporation
Allication Gas Turbine Division, Plant 10
Indianapolis, Indiana
IDEN WRP #6891004
KERAMIDA Project No. 2829E

Samples analysed using EPA-SW-846 Method 2500 NA = Not Applicable *ces-1.2.Dickloveshylene and nane-1.2.Dicklororchene results are concluded "Indian Department of Environmental Management Osbinatry Remodation Program Resource Guide, Asprositiv First I Cennap Gashe Human Health Evaluation by Office of Environmental Response, July 1996.

cis-1,3-Dichloropropene	<0.00	<0.005	<0.005	<0.005	<0.005	<0.005		> < 0.0055		I	50000	CO 600	720277	<0.011	<0.11	<0.054	<0.270	<0.552		<0.0052		<0.0055	T	Т	8500'0>						T	T	<0.0000	1	64 ⁽²⁾ NA	S ⁽²⁾ NA	
J.I-Dichloropropene	NA	NA	NA	NA	NA	NA	NA	< 0.0035	< 0.0056	<0.005	SWAD OF	CM.US	40.377	110.02	<0.11	<0.054	<0.270	<0.552	<0.0060	<0.0052	<0.0054	<0.0055	-0.00.00 -0.00.00	<0.0059	<0.0058	<0.0059	<0.0062	<0.0054	<0.0061	<0.0062	1900'0>	<0.0060	09000>	<0.0000	0.00764 ⁽²⁾	1.36(2)	
2,2-Dichloropropane	NA	NA	NA	VZ.	NA	N.A.	NA	< 0.0055	< 0.0056	<0.005	50,000	20000	40.077	11000	C0.11	<0.054	<0.270	<0.552	<0.0060	<0.0052	<0.0054	<0.0055	0.0000	<0.0059	<0.0058	<0.0059	<0.0062	<0.0054	<0.0061	<0.0062	<0.0061	<0.0000	<0.0000	<0.0000	NA	NA	
annqorqoroldəi(d-€,t		NA.	NA	NA	NA	NA	NA.	< 0.0055	< 0.0056	<0.005	COUNTS OF	00000	20077	-0.011	-0.11	<0.054	<0.270	<0.552	0900'0>	<0.0052	<0.0054	<0.0055	0.0000	<0.0059	<0.0058	<0.0059	<0.0062	<0.0054	<0.0061	<0.0062	<0.0061	<0.0000	<0.0060	<0.0000	NA	NA	
1,2-Dichloropropane	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0,005	< 0.0055	< 0.0056	<0.005	COUNTS OF OOK	CONTOS 20 K	20327	1100	40.11	<0.054	<0.270	<0.552	<0.00000>	<0.0052	<0.0054	<0.0055	050000	<0.0059	<0.0058	<0.00.59	<0.0062	<0.0054	<0.0061	<0.0062	<0.0061	<0.00000>	<0.0000	<0.0000	NA	NA	
onodooroidoid-2,1-eneri	0.025	<0.005	<0.005						BARRY.	<0.005	C0,005	QL,003	4000	11000	4011	<0.054	<0.270	<0.552	<0.0060	<0.0052	<0.0054	0.000	000000	<0.0059	<0.0058		<0.0062	<0.0054	<0.0061	<0.0062	<0.0061	<0.00000>	<0.0060	<0.0000	3.23 ⁽²⁾	193(2)	
analythaeaelhylene	27	6113	<0.005			<0.005	0.04		67.0	<0.005	500.05	<0.000 s	26.4	10.0	1 76	<0.054	LAI	15.5	<0.00000	<0.0052	<0.0054		000000	<0.0000>	150'0	0.16	<0.0062	11,0094	<0.0061	<0.0062	<0.0061	<0.0000>	<0.00000>	<0.0000	17.14	102.49	
analydaenoidaid-1,1	<0.005	<0.005						< 0.0055	9			20,000	0.000	0.011	4011	<0.054	<0.270	<0.552				<0.0055	0.0000	6500.0>	<0.0058	<0.0059	<0.0062	<0.0054	<0.0061	<0.0062			<0.0060	<0.0060	0.084	0.080	
əmmləovoidəid-2,1			<0.005	<0.005				< 0.0055	< 0.0056		c0.005	<0.005	2000	-0.011	-0.11 -0.11	<0.054	<0.270	<0.552	<0.000.0>	<0.0052	<0.0054	<0.0055	00000	I		-0.0059			<0.0061	<0.0062	<0.0061	<0.0060	<0.0060	<0.0000	0.025	0.37	
ənndəoroldəld-1,1	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.0055	< 0.0056	<0.005	<0.000	500,000	0.000	V0.27	-0.11	<0.054	<0.270	<0.552	090000>	<0.0052	<0.0054	<0.0055	000000	6500.0>	<0.0058	<0.0059	<0.0062	<0.0054	<0.0061	<0.0062	<0.0061	<0.00000>	<0.0060	<0.0000	40,074	1,000	
-foxoldaid-h,t-enax		NA	NA	NA	NA	NA	NA	<0.11	< 0.11	<0.050	OGOTOS	OCUUD OC	2000	0.106	711	40 545	<2.70	5.52	<0.0060	<0.0052	<0.0054	<0.00055	00000	<0.059	<0.058	650.05	<0.062	<0.054	<0.061	<0.062	<0.061	090°0>	<0.060	<0.060	NA	NA	
onerhemoroufliboroldsid		NA	Ι	NA	NA	NA	NA	< 0.0055	S	<0.010	<0.010	010.00	1000	CO.334	-0.33	0010	<0.550	1.15	<0.00000>	<0.0052	<0.0054	<0.0055	0000	<0.012	<0.012	<0.012	<0.012	<0.011	<0.012	<0.012	<0.012	<0.012	<0.012	<0.012	NA	NA	
anaxnadovolidaid-b,l		<0.010					<0.010	< 0.0055	9		T	<0.005	2000	1170	1100	<0.054	<0.270	<0.552	0900'0>	<0.0052	<0.0054	<0.0055	0.0000	690000	<0.0058	6500.0>	<0.0062	<0.0054	<0.0061	<0.0062	<0.0061	<0.0000		<0.0060	10.897	34.67	
ənəxnədoroldəiG-£,l	<0.010	<0.010	01000	<0.010	<0.010	<0.010	<0.010	< 0.0055	< 0.0055	<0.005	<0.000	C00'05	0.27	11700	11.00	CO 084	<0.270	<0.552	<0.0060	<0.0052	<0.0054	<0.0055	50,000	<0.0059	<0.0058	<0.0059	<0.0062	<0.0054	<0.0061	<0.0062	<0.0061	<0.000.0>	<0.000.0>	<0.0060	NA	NA	
anaznadoroldald-2,1	13	<0.010		<0.010		<0.010	<0.010	< 0.0055	< 0.0056	<0.000>	C0000	<0.000 CO.000	20.00	11700	20.01	20 05d	<0.270	<0.552	<0.0060	<0.0052	<0.0054	<0.0055	<0.0000 A	<0.0059	<0.0058	<0.0059	<0.0062	<0.0054	<0.0061	<0.0062	1900.0>	<0.00000>	<0.00000	<0.0000	2,524.23	10,000	
Dibromomethane Methylene Bromide)	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.0055	> 0.0056	<0.010	01000	0.010	50.4	40.000	40.02	-0.100	<0.550	411	<0.0000	<0.0052	<0,0054	<0.0055	40.000 /	<0.012	<0.012	<0.012	<0.012	<0.011	<0.012	<0.012	<0.012	<0.012	<0.012	<0.012	×	NA.	
onadioomordid-2,	NA	NA			NA	NA		< 0.0055	> 0.0056	<0.005	C00,0>	<0.000	0.25	1/70	70.11	-0.054	<0.270	<0.552	<0.0060	<0.0052	<0.0054	<0.0055	1 COUNTS	<0.0059	<0.0058	<0.0059	<0.0062	<0.0054	<0.0061	<0.0062	<0.0061	<0.0060		<0.00000	NA	NA	
-6-omordid-5, anaqorqoroid3	ı.	NA	NA	N.	NA	NA	NA	< 0.0055	< 0.0056	<0.010	01000	01000	50.00	40000	-0.00 P	20100	<0.550	1.1>	<0.0060	<0.0052	<0.0054	<0.00055	50000	<0.012	<0.012	<0.012	<0.012	<0.011	<0.012	<0,012	<0.012	<0.012	<0.012	<0.012	NA	NA	
Tab Samule No.				W6120376-08	W6120376-10	W6120376-12	W5090064-04	503198699	503198715	265075	270505	271016	230355	378333	ı	328302	326932	328587	874741	874742	874743	874739	8/4/40	291957	291958	291959	291960	291961	291962	291963	291964	291965	291956	291967			leanup Goal
Sample Depth	T	5.7	5.7	5.7	5.7	5.7	3.5	11:13	11-13	10-12	14-15	18-20	0-5	0-9	0-0	8.9	10-12	8-9	12-14	14-16	18-20	14-16	14-10	4-6	5-6	4.6	4-6	13.5-14	4-6	3.4	4-6	2-4	2.4	2-4	rrface Soil ⁽¹⁾	Subsurface Soil(1)	Non-Residential C
Date Sampled	12/19/1996	9001/01/61	12/10/1006	12/19/1996	12/10/1006	12/19/1996	\$661/9/6	3/1/2004	3/1/2004	5/2/2000	7/12/2000	7/17/2000	271272001	9/17/2002	2002/11/2	0/17/2002	8/27/2002	9/18/2002	8/29/2003	8/29/2003	8/29/2003	8/29/2003	572372003	5/1/2001	5/1/2001	5/1/2001	5/1/2001	5/1/2001	5/1/2001	5/1/2001	5/1/2001	5/1/2001	5/1/2001	5/1/2001	Tier II Residential Cleanup Goals Subsurface Soil ⁽¹⁾	Tier II Non-Residential Cleanup Goals Subsurface Soil(1)	ceeds the VRP Ther II
Samole	GP-1	C'dD	CIP.3	CP-4D	Gp.4	9-dD	HP-1	IW-1	IW-2	KB-17	KB-20	KB-24	KB-33	KB-40	ND-44	ND-45	KB-46	KB-47	KB-48	KB-49	KB-50	KB-51	B-51 DUP	KR-iI	KB-i2	KB-i3	KB-i4	KB-i4	KB-i5	KB-i6	KB-i6	KB-i7	KB-i8	KB-19	Residential Ch	I Non-Residenti	ed compound exa

Tablé 7a
absurface Soil Analytical Results for VOCs (mg/kg)
Former General Adéars Corporation
Allication Gas Turbiar Division, Plant 10
Indiampolis, Indiam
IDEM YRE##891004
KERAMIDA Project No. 2829E

Table 7a - Subsurface Soil - VOCs Page 5 of 12

National Column National C								KER/	AMIDA Project No. 2	KERAMIDA Project No. 2829E	29E									
Styles Colin Col	Sample Dep		-6-omordid-2, anagorgorold	anadaomordid-2,1		enexnedoroldoid-2,	ənəxnədoroldəld-E,l	ənəxnədoroldəiG-4,l			ənsifiəoroldəid-1,1		7.74	опэјуйзөолојијујене	anadisonoldoid-2,1-anan	ansqorqoroldsid-2,1	onnqorqoroldoid-E ₄ I	2,2-Dichloropropane	1,1-Dichloropropene	cis-1,3-Dichloropropene
E-11-16 CHONG CH		291968	<0.012	L		0900	0900			Ť			П	<0.00000	<0.0060	<0.0000	<0.0060	<0.0060	<0.0060	<0.0060
STATES COUNTY C		293161	_	Т			-	Γ	T	T			Γ	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057
SERIOR COUNTY C		293309		L		\$900	Ť	1	m	Ť	T	T	5	<0.0065	<0.0065	<0.0065	<0.0065	<0.0065	<0.0065	<0.0065
23.17.1 Colores Colo		293165	<0.011	Т		7200	Ť		Ť	Ť	T		Г	6.013	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057
25317.1 GDIDI - GROMS - GROMA		293166	<0.011	Т		9500			Ė				0.0056	100	<0.0056	<0.0056	<0.0056	<0.0056	<0.0055	<0.0056
Exist Color Colo		293170	<0.011	т		0054	Т	Г	İ	T				<0.0054	<0.0054	<0.0054	<0.0054	<0.0054	<0.0054	<0.0054
Exercise China C		203312	П	Т	0.049	۲	۲	Γ	Т	T		T	T	<0.024	<0.024	<0.024	<0.024	<0.024	<0.024	<0.024
ENTRY COUNTY COUNTY </td <td></td> <td>293313</td> <td>П</td> <td>Т</td> <td></td> <td>026</td> <td>Ť</td> <td></td> <td></td> <td>V</td> <td></td> <td></td> <td></td> <td><0.026</td> <td><0.026</td> <td><0.026</td> <td><0.026</td> <td><0.026</td> <td><0.026</td> <td><0.026</td>		293313	П	Т		026	Ť			V				<0.026	<0.026	<0.026	<0.026	<0.026	<0.026	<0.026
Secondaria Colors	203317	<0.010		T	0052 <0	0		Т	۲		T		<0.0052	<0.0052	<0.0052	<0.0052	<0.0052	<0.0052	<0.0052	
WYSORIALES INA NA CDDS GLODS		203318	1100>		1100	00003	t		۲	T	I	T		<0.0053	<0.0053	<0.0053	<0.0053	<0.0053	<0.0053	<0.0053
WY CORD COLUMN -	WKOKOATA.O.	N.A.	T	2000	O DIA	+	T	T	T			T	50000	500.005	50000	NA	12	NA NA	<0.005	
W. STORMER M. M. GODE GLUID		W5060414-01	NA		T	010	1	I	1	T	I			<0.000	<0.005	<0.005	NA	Y'N	NA	<0.005
WYDIOTES-LOW NA COUNTY COUNT		W5060414-02	NA.		T	010	Ť	I	T		I	I	T	CD:005	<0.005	<0.005	NA	N.Y.	NA.	<0.005
WEADORGETO INA NA 61025 GLOSD GLOSD GLOSD NA NA GLOSD NA		W5060414-03	NA.		T	010			T		I			<0.005	<0.005	<0.005	NA.	Y'Z	XX	<0.005
WEATH NAME OF CORDSTAND WAY OF COR		W5090064-01	×Z		0.025	050.05	Ť	Τ	Γ					388	<0.025	<0.025	NA	NA	NA	<0.025
WEAD/ORGANISTIC NAME NAME (1) (2010) NAME (1) (2010)		W5090064.02	NA.		0000	Ť	Ť							<0.005	<0.005	<0.005	NA	N.Y.	NA	<0.005
WYOTOGRAFIA NA	-	W5090064-03	N.A.		50005	Ť	Ť		T	T		I		<0.005	<0.005	<0.005	NA	NA	NA	<0.005
Wigner W	-	W7010365-01	NA		<0.005	0.010	Ė	Γ		Ť				<0.005	<0.005	<0.005	NA	NA	NA	<0.005
Stitle S	-	W7010365-02	N.A.			0.010	010	Γ						<0.005	<0.005	<0.005	NA	NA	NA	<0.005
State Course Co		503198723	< 0.0055	60055	< 0.0055	ľ	S	100	0055		Ť	5		27	1.0	5<0,0055	< 0.0055	< 0.0055	< 0.0055	< 0.0055
W-9570142-01 NA		503198731	< 0.0058		00	V	V		88	5	~		850000	0.54	0.000	< 0.0058	< 0.0058	< 0.0058	< 0.0058	< 0.0058
W. W. W. W. W. W. W. W. W. W. W. W. W.		W5070142-01	NA		<0.005	Ť					Ť			0.03	<0.005	<0.005	NA	NA	NA	<0.005
W-8970142-92 NA			NA			010				,				<0.005	<0.005	<0.005	NA	NA	NA	<0.005
MASTOLIA-2-04 NA			NA			010				İ				0.0	0.01	<0.005	NA	NA	NA	<0.005
W.SOT0142-03 NA NA NA AND CO.005 NA			NA			010								<0.005	<0.005	<0.005	NA	NA	NA	<0.005
WASTORISTOZ NA			NA			010									<0.005	<0.005	NA	NA	NA	<0.005
MYO10422-02 NA			NA			010							1	<0.005	<0.005	<0.005	NA	NA	NA	<0.005
NA			NA			010	110							<0.005	<0.005	<0.005	NA	NA.	NA	<0.005
NA NA NA NA NA NA NA NA	1		NA			010	e lo	01						<0.005	<0.005	<0.005	NA	NA	NA	<0.000>
NA NA NA NA NA NA NA NA	0.0	NA.	NA				YZ.	Z		800		8	IA.	0.004	0.004	NA	NA	NA	NA	NA
NA NA NA NA NA NA NA NA NA NA NA NA NA N		AN	NA		NA.	Z							IA.	65'0	0.49	NA	NA	NA.	NA NA	NA
NA NA NA NA NA NA NA NA NA NA NA NA NA N		NA	NA.		NA.	Z							IA.	0.071	0.071	NA	NA	NA	NA	NA
NA NA NA NA NA NA NA NA NA NA NA NA NA 10074 0.025 0.084 17.14 3.23 ⁽³⁾ NA NA NA 1.96 ⁽³⁾ NA NA NA NA NA 1.0700 NA 3.457 NA NA 1.000 0.37 NA NA 1.000 NA NA 1.96 ⁽³⁾ NA NA NA NA NA NA NA NA 1.96 ⁽³⁾ NA NA NA NA NA 1.96 ⁽³⁾ NA NA NA NA NA 1.96 ⁽³⁾		AN	NA A		NA.	Z								<0.120*	<0.120*	NA	NA	NA	NA	NA
NA NA NA 1252423 NA 0897 NA 40074 0.025 0.084 17,14 3.23 ⁽³⁾ NA NA NA 10070 0.025 0.084 17,14 3.23 ⁽³⁾ NA NA NA NA NA NA NA NA NA NA NA NA NA		NA	NA		NA	Z								<0.120*	<0.120*	NA	NA	NA.	NA	NA
NA NA NA NA NA NA NA NA NA NA NA NA NA 1000 032 0.086 10.14 5.23 NA NA NA NA NA NA NA NA NA NA NA NA NA	0.00		-			200,000	-	-	H	H	40.00	2000	1000	20.00	(Dan 4	214	17.4	417	0.000564(2)	100
NA NA NA 10000 NA 34.67 NA NA 1000 037 0.066 107-60 104 ⁽²⁾ NA NA NA NA	Cleanup Coals Subsurface Soil	The second second	NA	NA	1	2,724.13	-	0.897	-	-	40.014	0.023	0.08+	17.14	3.63	NA	INA	MA	0,000	
100 TAN 1000 1000 1000 1000 1000 1000 1000 10	Tier II Non-Residential Cleanup Goals Subsurface Soil 13	OHO)	NA	N	NA	10,000	NA	34.67	NA	NA	1,000	0.37	0.080	102.49	193(2)	N.	NA	NA	1.3600	NA

VOCA: a Volatile Organic Compounds mg/kg = milliparnis per klisparnis
Samplea malyned using FDA SW 4460 Method SE509 NA = Nat Applicable
"cis-1_2-Dichlorecthyleae and trans-1_2-Dichlorechene resists are combined
"in fadinas Department of Environmental Management Voluntury Remediation
Program Resource Calido, Appendix F Teel IC Gramp Goals-Human
Health Parkanianis Pol Office of Environmental Response, Judy 1996.
Calculated using avergate toxicity values and Teel Toquincox.

^{Co} Source: EPA Region 3 Risk-Based Concentration Table - October 1998 Update.

ənəqorqoroldəiG-£,1-eiə								900	900	500		500		500				-	NA	NA	
eneqorqoroldəld-1,1		NA	NA	NA	NA	<0.	<0°	(O>	-O.	<0.0	<0.	<0.	<0.	<0°	<0>	-O>	<0.	(Desired)	0.007,004	136(2)	
2,2-Dichloropropane	NA	NA	NA	NA	NA	NA	KZ.	NA	NA	NA	NA	NA	AZ	NA	NA	AN	NA		NA 0.0	NA.	
	NA	NA	NA	NA	NA	NA		NA	-		H										
3-7-Dichloropane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	
snaqorqoroldəld-£,1	NA NA	NA	NA	NA	NA	1.0>	<0.1	<0.005	<0.005	<0.005	<0.1	<0.005	1.0>	<0.005	1.0>	1.0>	<0.1		NA	NA	
snedisoroldiold-L _i l-enal		<0.630	<0.005	<0.005	<0.005	<0.1	<0.600	<0.005	<0.005	<0.005	<0.1	<0.005	<0.1	<0.005	<0.1	<0.1	<0.1	4 ma(2)	5,23	193(3)	
cis-1,2-Dichloroethylene	12	<0.63	<0.005	<00'00>	<0.005	1.2	9'0	<0,005	<0.005	<0.000>		<0,005	0.5	0.015	13.4		1	***	17.14	102.49	
analydisoroidaid-1,1	Y2				N.N.	100	c0.1	<0.005		<0.005	<0.1	<0.005	<0.1	<0.005	<0.1	<0.1	<0.1	-	0.084	080'0	
anndraoroldald-2,f	(3.1	<0.63	20,005		<0.005				<0.005			90	<0.1	<0.005	1	<0.1	<0.1	-	0.025	0.37	
onndisoroldold-1,1	3.1	<0.63			<0.005			<0.005							1.00	1.0>	1.0>	100000	40.074	1,000	
-2-oroldəld-b _e l-zarrı ənətud					NA					6									NA	NA	
Dichlorodifluoromethane	NA	NA	NA	NA.	NA	⊽	⊽	10.0>	<0.01	<0.01	V	10.0>	1>	10.0>	7	⊽	-I>		NA	N. A.	
ansznadoroldaid-4,1	YZ.	N.A.	Y.Y.	ZZ	NA	1.0>	<0.1	<0.000>	<0.005	<0.005	1.0>	<0.005	<0.1	<0.005	<0.1	<0.1	<0.1	1	0.897	34.67	
snsxnsdoroldsiG-E,l	NA	NA	NA	NA	NA	<0.1	<0.1	<0,005	<0.005	<0.005	<0.1	<0.005	<0.1	<0.005	<0.1	<0.1	<0.1	II.	3 NA	NA	45
9nsznadoroldhid-£,1	NA	NA	NA	NA	NA	<0.1	<0.1	<0.005	<0.005	<0.005	<0.1	<0.005	<0.1	<0.005	<0.1	<0.1	<0.1		2,524,23	10,000	
Dibromomethane (Methylene Bromide)	NA	NA	NA	NA	NA	0.15	<1.0	<0.01	(0.0)	10.0>	<1.0	10.0>	0.15	<0.01	<1.0	0.1>	0.1>		NA	NA	
Chloropropane L ₃ -Dibromoethane	NA	NA	NA	NA	NA	1.0>	1.0>	<0.000>	<0.005	<0.005	1.0>	<0.005	<0.1	<0.005	1.0>	1.0>	1.0>	-	NA	NA	
-£-omordid-£,1	NA	NA	NA.	N.A.	NA	0.1>	<1.0	<0.01	<0.01	<0.01	0.1>	<0.01	<1.0	<0.01	<1.0	<1.0	0.1>		NA	NA	
Lab Sample No.	N.N.	K.Z.	K.X.	N.V.	ďZ.	69803	10869	50869	90869	69807	69873	69874	69875	92869	69945	69946	69947			0	Cleanup Goal up Goal
Sample Depth (feet)	8-10	3.5	8-10	8-10	8-10	13-15	13-15	23-30	13-15	23-25	8-10	28-30	8-10	23-25	8-10	3.5	8-10	W.	surface Soil"	Subsurface Soil®	II Non-Residential
Date Sampled	9/1992	9/1992	9/1992	9/1992	9/1992	6/2/1993	602/1993	6/2/1993	6/2/1993	6/2/1993	6/3/1993	6/3/1993	6/3/1993	6/3/1993	6/4/1993	6/4/1993	6/4/1993		er II Residential Cleanup Goals Subsurface Soil	er II Non-Residential Cleanup Goals Subsurface Soil ⁽¹⁾	sceeds the VRP Tier II Non-Residential Com-
Sample No.	SB-132	SB-133	SB-134	SB-135	SB-135 Dup	SB-145	SB-145 Dup	SB-145	SB-146	SB-146	SB-147	SB-147	SB-148	SB-148	SB-149	SB-150	SB-150		r II Residential C	r II Non-Residen	ected compound o

Table 7a - Subsurface Soil - VOCs Page 7 of 12

	anasinadiyqord-n anaryi2 -oroldariaT-2,1,1,1 -oroldariaT-2,1,1,1 -oroldariaT-2,2,1,1 -oroldariaT-2,2,1,1 -oroldariaT-2,2,1,1 -oroldariaT-2,2,1,1 -oroldariaT-2,2,1 -oroldariaT-2,2,1	NA NA <0.005 NA <0.005 <0.005 NA	<0.005 NA <0.005 <0.005 NA <0.005 NA <0.005 NA <0.005 NA NA <0.005 NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA <0.005 NA <0.005 <0.005 <0.005 NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA <0.005 NA <0.005 <0.005 <0.005 NA	NA NA <0.005 NA <0.005 <0.005 NA	NA <0.005 NA <0.005 0.005 NA	< 0.0055 < 0.0055 < 0.0055 < 0.0055 < 0.0055	< 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036 < 0.0036	<0.005 <0.005 <0.005 <0.005 <0.005	9	68 46 2.6 2.6 2.6 2.6 2.6 2.6 2.1	CONT. CO.217 CO.	(0.11 (0.11 (0.11 (0.11 (0.11 (0.11	1.53	<0.270	<0.552 <0.552 <0.552 <0.552 <0.552 <	71<0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.00	CO.0054 <0.0054 <0.0054 <0.0054 <0.0054 <0.0054	<0.0055 <0.0055 <0.0055 <0.0055 <0.0055	<0.0057 <0.0057	<0.0059	<0.0058 <0.0058 <0.0058 <0.0058 <0.0058	< 0.0059 < 0.0059 < 0.0059 < 0.0059 < 0.0059	<0.0062 <0.0062 <0.0062 <0.0062 <0.0062	0.000	60,0001 C0,0002 C0,0062 C0,0062 C0,0062 C0,0062 C	<0.0061 <0.0061 <0.0061 <0.0061 <0.0061 <0.0061	İ	<0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060	<0.0060	7 1,767,785 33,5 ⁶⁹ NA 0,076 0,044 0,227 278,926 NA 235,033	0 1 1 100 NA 1 105 37
	Methyl(tert) butyl ether 4-Methyl-2-pentanone (MIBK))	NA <0.020	NA <0.020	NA <0.020	NA <0.020	NA <0.020	< 0.0055 < 0.011	< 0.0056 < 0.011 NA A A 0.050	<0.010 <0.050	<0.010 <0.050	<5.4 <26	× 1	<0.022 <0.108	<0.109 <0.545	Y	<1.1 <5.52	<0.0060 <0.059	<0.0022 <0.052	<0.0055 <0.0546	<0.0057 <0.0571	20.012 <0.039	<0.012 <0.058	<0.012 <0.059	<0.012 <0.062	40.05	9 8	9	<0.012 <0.060	<0.012 <0.060	<0.012 <0.060	0.35 68,147	4 400 400
011	Methyl Ethyl Ketone		0.020 0.020	Ť	010 <0.020	0.010 <0.020	0,010 <0,020		0.002 < 0.011	0.000 <0.050	<0.025 <0.100	426		0.1108	0.458 < 0.545		76	090'0> 60'00	6144 <0.054	0.1 <0.055	0.0429 <0.057	029 <0.039	929 <0.058	029 <0.059	031 <0.062	027 <0.054			030.0> 050	030 <0.060	030 <0.060	0.0255 ⁽²⁾ 11.62	(Door
roiner Cuctara inguisco: Corporation Hication Gas Turbine Division. Plant Indianapolis, Indiana IDEM VRP #6991004 KERAMIDA Project No. 2829E	Methylene chloride	4	NA		NA <0.010	ľ	v	V	< 0.0056 < 0.		<0.005 <0.0	E > 95	377 <1.39	0 11 0	131	8.05 <1.40	0	<0.00060	<0.0052 <0.0054	<0.0055	<0.0057	40.0059 40.0	<0.0058 <0.0	<0.0059 <0.0	<0.0062 <0.	40,0054 40,0	20.000 50.000	-	<0.0060 <0.0	<0.0060 <0.0	<0.0060 <0.0	441(2) 0.0	Done .
Allication Gas Turbine Division, Plant 10 Indianapolis, Indiana IDEM VRP 66991004 KERAMIDA Project No. 2829E	eobropylbenzene		NA	NA	NA NA	NA NA	NA	< 0.0055	< 0.0056		<0.005	118	0.21	0.11	0.00	1 KG	<0.552	090000> 0	2 <0.0052	V	7	<0.0059	<0.0058	<0.0059	<0.0062	<0.0054	CAUDON 2	<0.0061	<0,00060	<0.0060	<0.0060	185%	(Law)
Allication	desachlorobutadiene	NA	NA	NA.	NA	NA	NA	Ť	0.0056 < 0.11	05 <0.010	010.05 <0.010	Ì	Ť	11 40,022	54 <0.100		Ť	0900 <0.0050	052 <0.0052	5 60	057 <0.0057	0.0059 <0.012	1	0.0059 <0.012		054 <0.011	0.0062 50.012	Ť	0,0060 <0.012	0.0060 <0.012	<0.0060 <0.012	AN 7777	
	3- Hexanone	NA.		<0.020 NA	<0.020 NA	0000 NA	00.020 NA	:0.11 < 0.0055	< 0.11 < 0.005		<0.050 <0.005	26 <2.6		60.108	C0 545 C0 054		V	<0.0597 <0.0060	0.0520 <0.0	0.0546 <0.005	0.0571 <0.0	0.059 <0.00	0.058	0.059 <0.00	V	8 8	0.062 40.00	T	Ĺ	0.060 <0.00	<0.060 <0.00	NA 6	
	Ethyl methacrylate	1	NA d		NA NA			< 0.11	< 0.11	T	T	Ť		<0.022 o	1		П		40.0052 46.0052	<0.0055 <	<0.0057 <	<0.012 <0.012	C0.012	Ť	<0.012	20.011	00012	<0.012	<0.012	<0.012		NA	
	Substreene	<0.005	<0.005	<0.005	<0.005	50.005	<0.005	< 0.0055	< 0.0056	<0.005	<0.005	2	0.55	0.00	0.075	0.54	<0.552	0900'0>	<0.0052	<0.0055	<0.0057	<0.0059	<0.0058	<0.0059	<0.0062	<0.0054	40,0061	<0.0061	<0.0060	<0.0060	0900'0>	834.372	
	-£,1-znirī -5,1-znirī -5,1-znirī	<0.005	<0.005		<0.005		<0.005	< 0.0055	<0.0056	<0.005	<0.005	42.6	<0.277	11000	20.054	<0.270	<0.552	0900'0>	<0.0052	<0.0055	<0.0057	<0.0059	<0.0058	<0.00.0>	<0.0062	<0.0054	<0.0001	<0.0061	<0.0060	0900'0>	0900'0>	NA	
	a h Samuele No.	W6120376-02	W6120376-04		W6120376-08				503198715	270505	271016	293128	328355	328354	238286	326932	328587	874741	874742	874739	874740	291956	890106	291959	291960	291961	291962	291964	291965	291966	291967		
	Sample Depth	5-7	5-7	2:3	5.7	5.7	3.5	11-13	11-13	14-16	18-20	4-6	8-9	80.0	8.9	10-12	8-9	12.14	14-16	14-16	14-16	2-4	95	4-6	4-6	13.5-14	4-0	4.6	2.4	2-4	2.4	urface Soil(1)	
	Date Samuled	12/19/1996	12/19/1996	12/19/1996	12/19/1996	061/61/71	5661/9/6	3/1/2004	3/1/2004	2/12/2000	7/17/2000	5/15/2001	9/17/2002	9/17/2002	9/17/2002	8/27/2002	9/18/2002	8/29/2003	8/29/2003	8/29/2003	8/29/2003	5/1/2001	1002/1/5	5/1/2001	1002/1/5	5/1/2001	5/1/2001	5/1/2001	\$/1/2001	5/1/2001	5/1/2001	canup Goals Subs	
	Samuels No.	GP-1	GP:2	GP:3	GP4	CAPS	HP.1	IW-1	IW-2	KB-1	KB-24	KB-33	KB-40	KB-44	VB-45	KB-46	KB-47	KB-48	KB-49	KB-50	KB-51 DUP	KB-il	KB-II	KB-i3	KB-34	KB-i4	KB-t5	KB-10 KB-16	KB-i7	KB-i8	KB-19	Tier II Residential Cleanup Goals Subsurface Soil(1)	

VOCA = Volatile Organic Compounds mpl/tq = milligrams per bilogram
Samples analyzed uning EUA SW-456 Method SZOO MA, a Not Applicable
*cis-1-2 biehlorochtiyene and trans-1_2 Dichlorochtene results are combined.
¹⁰ Indiana Lepariment of Environmental Management Volatinay Remothened
¹⁰ Indiana Lepariment of Environmental Management Volatinay Remothened
¹⁰ Porgram Resource Cacide, Appendix FTer II Cleany Coast-Human
Pengum Resource Godie, Appendix FTer II Cleany Coast-Human
¹⁰ Pollucia Paramona Properior of Environmental Response, July 1996.
¹⁰ Colcluded using armogate toxicity values and Tier II equations.
¹⁰ Source: EPA Region 3 Risk-Based Concentration Table - October 1998 Update.

Table 7a - Subsurface Soil - VOCs Page 8 of 12

Date Sample Depth Lab Sample No. L		adiene													
Date Sampled Utest Line Sample vot. E. S. E. S. S/1/2001 2-4 2/31/64 6.006/5 6.006/5 S/1/2001 2-4 2/31/64 6.006/5 6.006/5 6.001/1 S/1/2001 2-4 2/31/64 6.006/5 6.006/5 6.001/1 S/1/2001 10-12 2/31/65 6.006/5 6.006/5 6.001/1 S/1/2001 10-12 2/31/65 6.006/5 6.006/5 6.001/1 S/1/2001 8-10 2/31/7 6.006/4 6.009/4 6.001/4 S/1/2001 8-10 2/33/1 6.006/4 6.009/4 6.009/4 S/1/2001 8-10 2/33/1 6.006/4 6.000/5 6.000/5		texachlorobut	oobtobilpsuseus oqomethane	-Isopropyltoluene	dethylene chloride	dethyl (tert) butyl ether	MIBR)	ənələdidqas	-Fropylbenzene	giàscue	-orofdaeri9T-2,[,[,] anadi	-0.16,2,2-Tetrachloro- rhanc	l'etrachloroethene l'eluene		susznsdovoltoivT-E ₆ 2,1
\$/16/2001 2-4 293161 -0.0057 -0.0057 -0.011 \$/16/2001 2-4 2.93161 -0.0065 -0.0065 -0.0065 -0.0013 \$/16/2001 10-12 2.93166 -0.0057 -0.0057 -0.011 \$/16/2001 8-10 2.93166 -0.0058 -0.0056 -0.001 \$/18/2001 8-10 2.93170 -0.0054 -0.0054 -0.011 \$/18/2001 8-10 2.93312 -0.026 -0.026 -0.016 \$/18/2001 8-10 2.93313 -0.026 -0.026 -0.016 \$/18/2001 8-10 2.93313 -0.026 -0.026 -0.005 \$/18/2001 8-10 2.93313 -0.026 -0.026 -0.005		<0.0060 <0.012	200	0.028		0.0	0.05	<0.0>	90		09			<0.0>	900.0> 09
S/18/2001 2-4 293309 0.0065 0.0065 0.0013	<0.065<0.057<0.056<0.054<0.240<0.250	T		<0.0057		<0.057 <0.01	11 <0.057	<0.0057	<0.0057 <	<0.00057 <0	<0.0057 <0.005		57 <0.005		57 <0.005
\$I162001 10-12 293165 40.0557 <0.011 \$I162001 10-12 293165 40.0557 <0.0055	d.0.05/4d.0.05/4d.0.05/4	<0.0065 <0.013	013 <0.0065	5 <0.0065	0.038 <0.	<0.065 <0.013	13 <0.065	<0.0065	<0.0065 <	S			Ĭ		Ť
\$/16/2001 10-12 293166 <0.0056 <0.0036 <0.011 \$/16/2001 8-10 293170 <0.064	<0.056 <0.054 <0.260	<0.0057 <0.01	011 <0.0057	<0.0057	<0.028 <0.	10.0> 750.0>	11 <0.057	<0.0057	<0.0057 <	<0.0057 <c< td=""><td></td><td></td><td></td><td></td><td>Ì</td></c<>					Ì
\$I16/2001 \$1.10 253170 \$0.054 \$0.0054 \$0.011 \$I18/2001 \$1.10 253312 \$0.024 \$0.024 \$0.049 \$I18/2001 \$1.10 253313 \$0.026 \$0.026 \$0.051 \$I18/2001 \$1.10 253313 \$0.0062 \$0.0062 \$0.001	<0.054 <0.240 <0.260	<0.0056 <0.01	011 <0.0056	<0.0056	<0.028 <0.0	c0.056 <0.011	11 <0.056	-	-				1		S6 <0.005
\$IR2001 8:10 293312 4:024 4:024 4:0.04 \$IR2001 8:10 293313 40:026 4:0.04 \$IR2001 8:10 293313 40:056 4:0.051 \$IR2001 8:10 293317 40:052 4:0.003 \$IR2001 8:10 293317 40:062 4:0.003	<0.240	<0.0054 <0.01	011 <0.0054	+ <0.0054	<0.027 <0.	054 <0.01	11 <0.054	-		-		<0.0054 <0.0054		1	24 <0.0
\$/18/2001 8-10 293313 <0.026 <0.026 <0.051 \$/18/2001 8-10 293317 <0.0052 <0.0052 <0.010	<0.260			H	Ť		-					24	0.036 <0.024		Ť
5/18/2001 5-10 293317 <0.0052 <0.019				<0.026			Ť.	-	02000		<0.026 <0.026 0.0060 <0.026	070,020	CS 40,026	070707	500 OZ CS
and the same of th	<0.052	C0.0052 <0.0	0.010	200002	O O O O O	CD.052 C0.010	11 -0.052	50,0032	-	50,000	T		I	T	T
50,005 50,005 NA	50,000	NA NA	T	NA	0100	T	00000	-	+		T	T	T		NA
627/1995 0-10 WOMENTANI CO DOS COMOS NA	-0.020				T	Í	<0.020	NA		<0.005 NA					NA
626/1995 10-20 WSW0414-00 C0005 C0005 NA	-0.020	T		T	T	T	<0.020	-	T		0				NA
6/29/1995 18-20 W5060414-03 <0.005 NA	<0.020					<0.02 NA	<0.020	NA	Y VZ	<0.005 NA				S NA	NA
9/5/1995 13-15 W5090064-01 <0.025 <0.025 NA	<0.100	NA NA		NA.	<0.050 <0.	AN 001.05	<0.100	NA	NA	0.025 N.	<0.025				NA
9/5/1995 28-30 W5090064-02 <0.005 <0.005 NA	<0.020	NA NA	NA.	NA.	<0.010 <0.	<0.02 NA	<0.020	NA	Y YZ	c0.005 N.	<0.005	05 <0.003		YZ S	NA
MW-156 9/5/1995 18-20 W5090064-03 <0.005 <0.005 NA	<0.020	NA NA	NA.	NA.	<0.010 <0.	<0.02 NA	<0.020	NA	NA AN	c0:005 N.	(0)	٦	1013	NA NA	NA
1/23/1997 3-5 W7010365-01 <0.005 <0.005	<0.020	NA AN	NA.	NA.	0.048 <0.	<0.02 NA	<0.020	NA					1		NA
1/23/1997 8-10 W7010365-02 <0.005 <0.005 NA	<0.020	NA AN		NA	3	<0.02 NA	<0.020	~	-		7		1	T	\neg
3/1/2004 11-13 503198723 < 0.0055 < 0.0055	< 0.11	< 0.0055 < 0.	H	< 0.0055		Ť	50	-		1					_
3/1/2004 13-15 503198731 < 0.0058 < 0.0058 < 0.12	< 0.12	8500		< 0.0058		2	88	< 0.0058	8500	200	9500	SC0.0058 < 0.0028	800000000000000000000000000000000000000	800,000 800	208 < 0.002
7/10/1995 13-15 W5070142-01 <0.005 <0.005	<0.020	NA NA		NA	1		<0.020	NA	Ī		CO.002	0 10	2000	50000	NA MA
7/14/1995 48-50 W5070171-01 <0.005 <0.005 NA	<0.020	NA AN				-	<0.020	NA		C0.005		9 10	20,000	50,000	NA MA
7/11/1995 18:20 WS070142-02 <0.005 NA	<0.020						CO.020	NA	1		50,000	20	20,000	50,003	MAINA
7/11/1995 38-40 W5070142-04 <0.005 <0.005 NA	<0.020	NA					070.050	NA	T	CU.005	I	20000	20000	COO	MANAGE
13-15 W5070142-03 <0.005 <0.005 NA	<0.020						020.020	NA					T	T	MA
7/11/1995 33-35 W5070142-05 <0.005 <0.005 NA	<0.020				<0.010 <0.		07070	NA	1	Ť		T	T	5 2	NA PAR
1/31/1997 48:50 W7010425-02 <0.005 <0.005 NA	<0.020			NA	0.053<0	Ī	<0.020	NA	1	T		I	50.003		MA
1/31/1997 63-65 W7010425-03 <0.005 <0.005 NA	<0.020				0.0047	50.02	07070	NA	T	CUUUS INA			T	100	NA
3/1994 2-4 NA NA NA NA	N.N.			NA			NA.	NA	T			40,001	T	I	NA NA
NA NA NA	d'X						NA	NA	Ī			<0.000	T		TANK TO A
3/1994 4-6 NA NA NA NA	47			VV	NA NA		NA	NA	1	NA NA	NA	<0.00		DA .	NA AN
6-8 NA NA NA NA	N.A.	NA NA	NA	NA	NA NA	NA NA	NA	NA	NA AN	NA NA	NA	<0.120	1		VV
SB10-5 3/1994 14-16 NA NA NA NA NA	K.N.	NA NA	NA	NA	NA NA	A NA	NA	NA	NA	Z	NA	<0.120	00 <0.120	NA 0	NA
Tier II Residential Cleanup Goals Subsurface Soil ⁽¹⁾ NA 834.372 NA	NA	6,777	NA 185 ⁽²⁾	441(2)	0.0255 ^{CD} 1	11.62 0.35	35 68.147	7 1,767,785	33.50	NA	9/000	0,044 0	0.227 27	278.926	NA 235.033
									100			1	ŀ	ŀ	r
Tier II Non-Residential Cleanup Goals Subsurface Soif ⁽¹⁾ NA 1,000 NA	NA	31.18	NA 185 ⁽²⁾	1,000	10.9(2)	146.24 5.	5.6 407.48	8 10,000	9727	410,000003	7.24	0.21	8.01	1,000	NA 1,405.37

1,2,4-Trichlorobensene	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA.	NA.	NA	NA	NA		235,033	1,405.37	
anaxnadovoldəlvT-£,£,1	NA	NA	NA	NA	NA	NA	N/N	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA		YZ.	NA	
Toluene	43.1	<0.630	<0.005	<0.005	<0.005	<0.1	<0.01	0.0068	<0.005	0.0075	<0.1	0.024	<0.1	0,012	<0.1	<0.1	<0.1		278.926	1,000	
5nsdisoroldsarisT	<3.1		<0.005	- 0				<0.005	<0.005	6,013	<0.1	<0.005	<0.1	<0.005	<0.1	0.7	<0.1		0.227	8.01	
-oroidasra-T-£,£,1,1 anada	NA	NA	NA	NA	NA	<0.1	<0.1	<0.005		<0.005	<0.1	<0.005	<0.1	<0.005	<0.1	<0.1	<0.1		0.044	0.21	
-oroldanityT-2,L,L,L		NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA		0.076	7.24	
Styrene		NA	NA	NA.	NA	<0.1	<0.1	<0.005	<0.005	<0.005	<0.1	<0.005	<0.1	<0,005	<0.1	<0.1	<0.1		NA	410,000 ⁽³⁾	
n-Propylbenzene	NA	NA	NA.	4Z	NA	NA	NA NA	NA	N.A.	N.	NA	NA	NA	NA	NA.	NA	NA		33.5%	972(2)	
Naphthalene	Z.	NA	NA.	NA	NA	YZ.	NA.	YZ.	YZ.	NA.	YZ.	NA	NA	NA	NA.	NA	NA		1,767,785	.48 10,000	
(MTBE) (MTBE)	NA.	NA	NA	4Z	VZ.	V	V	10.0>	10.0>	10.0>	V	10.0>	V	1		1	⊽	B)	0.35 68.147	5.6 407.4	
Methyl Ethyl Ketone	Z	NA NA	NA NA	AZ AZ	NA NA	VN IV	AN IN	10	NA 10.05	AN 10.0>	AZ IV	AN 10.0>	NA IN	100	AN IN		<i na<="" td=""><td>N-</td><td>11.62</td><td>146.24</td><td></td></i>	N-	11.62	146.24	
Methylene chloride		<0.630 N	<0.005 N	<0.005	<0.005	<1.0 N	<1.0 N	SIG	0.012	> 51070	<1.0 ×	1020	<1.0		<1.0				0.0255	10.90	
p-Isopropyltoluene		NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA		4410	1,000(2)	
lsopropyldenzene		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		185(2)	185(2)	
odomethane	1	NA	NA	NA	NA	<1.0	<1.0	<0.01	10.0>	10.0>	<1.0	10.0>	<1.0	10'0>	0.1>	61.0	<1.0		NA	XX	
Hexachlorobutadiene		VV	NA	KZ.	NA	4Z	YZ.	N.A.	N.A.	NA.	NA	Y.Y	V.V.	NA	NA	NA	NA		6.777	31.18	
эпоппхэН-2	NA	NA	NA	NA	NA	-	12	10:0>	10:0>	<0.01	-	10.0>	41	<0.01	7	2	D		NA	NA	
gpàj meprocàjus	NA	NA	NA	NA	NA	<1.0	61.0	<0.01	10.0>	10.03	<1.0	<0.01	<1.0	<0.01	<1.0	<1.0	<1.0		NA	NA	
Ethylbenzene	3.1	59.0>	<0.005	<0.005	<0.005	1.0>	1.0>	<0.005	<0.005	<0,005	<0.1	<0.005	<0.1	<0.005	<0.1	40.1	1.0>		834,372	1,000	
-E,l-enra Mensoragene		N.A.	A.N.	NA.	AZ.	1.0>	-1.0>	<0.005	<0.005	<0.005	<0.1	<0.005	1.00	<0.005	1.0>	<0.1	1.0>		NA	NA	
Lab Sommle No.														92869							Cleanup Goal
Sample Depth		3-5	8-10	8-10	8-10	13-15	13.15	23-30	13-15	23-25	8-10	28.30	8-10	23-25	8-10	3.5	8-10		bsurface Soil(1)	Tier II Non-Residential Cleanup Goals Subsurface Sorfo	VRP Tier II Non-Residential
Date Sermolod	9/1992	9/1992	9/1992	9/1992	9/1992	6/2/1993	1001/6/9	6/2/1993	6/2/1993	6/2/1993	6/3/1993	6/3/1993	1001/17/9	6/3/1993	6/4/1993	6/4/1993	6/4/1993		Tier II Residential Cleanup Goals Subsurface Soil[11]	ntial Cleanup Goa	exceeds the VRP Tier
Natural Market	SB-132	SB-133	SB-134	SR-135	SB-135 Dup	SB-145	SR.145 Dun	SB-145	SB-146	SB-146	SB-147	SB-147	SB-148	SB-148	SB-149	SB-150	SB-150		T Residential	I Non-Resides	bunoquos par

Table 7a
Subsurface Soil Analytical Results for VOCs (mg/kg)
Former General Mateus Corporation
Alteration Gas Turbine Division, Plant 10
Indianapolisis, Indiana
IDEM VEP #6991004
KERAMIDA Project No. 2829E

Xylenes, Total	<0.005	<0.005	<0.000>	<0.005	<0.005	<0.005	<0.005	< 0.017	< 0.017	<0.005	0.000	<0.000>	-	0.0	<0.11	17.0	0.94	50	<0.00060	<0.0052	<0,0054	<0.0057	<0.0059	<0.0059	<0.0058	<0.0059	<0.0062	<0.0061	<0.0062	<0.0061	<0.0060	0900'0>	<0.0000	1,000	1,000			
Vinyl chloride	0.0	010:0>	4.01	010:0>	<0.010	<0.010	<0.010	< 0.0022	< 0.0022	<0.010	0100>	00000	40,00	50000	<0.22	<0.109	<0.550	<1.1	<0.0024	<0.0021	<0.0022	<0.0023	<0.012	<0.012	<0.012	<0.012	<0.012	<0.012	<0.012	<0.012	<0.012	<0.012	<0.012	0.129	0.13			
Vinyl acetate	<0.020	<0.020	< 0.020	<0.020	<0.020	<0.020	<0.020	<0.11	<0.11	NA.	<0.010	010'0>	40.00	0.000	<0.72	601.0>	<0.550	1.1>	<0.0060	<0.0052	<0.0054	<0.00057	<0.012	<0.012	<0.012	<0.012	20012			<0.012	<0.012	<0.012	<0.012	NA	NA			
naxnadiydiamivT-2,£,t	NA	NA	NA	NA	NA	NA:	NA	< 0.0055	< 0.0056	<0.005	<0.005	<0.0005	000	0.00	<0.11	3.38	565	2.98	<0.0060	<0.0052	<0.0054	<0.00057	<0.0059	<0.0059	<0.0058	<0.0059	<0.0062	<0.0061	<0.0062	<0.0061	<0.0060	<0.0060	<0.0060	1.74(0)	124 ⁽³⁾			
nəxnədiyiləmirT-4,2,1	YZ.	NA	NA	NA	NA	NA	Z'A	< 0.0055	9		<0.000>	<0.000>	300	175.0	110>	10.9	27.8	12.2	<0.0060	<0.0052	<0.0054	<0.0055	<0.0059	<0.0059	<0.0058	<0.0059	<0.0062	<0.0061	<0.0062	<0.0061	<0.0060	<0.0060	<0.0060	1.590	306			
onsqorqoroldəirT-£,£,1	NA	NA.	NA.	NA	NA	NA	NA	< 0.0055	< 0.0056	<0.005	<0.005	<0.000s	62.0	-0.011	11.02	<0.054	<0.270	<0.552	0900°0>	<0.0052	<0.0054	<0.0055 <0.0057	<0.0059	<0.0059	<0.0058	<0.0059	<0.0062 0.0062	<0.005	<0.0062	<0.0061	<0.0060 oc	<0.0060	<0.0060	NA	NA			
Lrichlorolluoromethan	NA	NA	NA	NA	NA	NA.	NA	< 0.0055	<0.0056	<0.005	<0.000>	<0.000>	CZ.5	1007	110>	<0.054	<0.270	<0.552			<0.0054	<0.00055	6500.0>	<0.0059	<0.0058	<0.0059	<0.0062 40.0064	1900'0>	<0.0062	<0.0061	<0.0060	<0.0060	<0.0060	281(2)	1,000(2)			
Trichloroethene	12	<0.005	<0.005	0,077	0.18	0.041	<0.005	4.8	56	0.19	<0.005	<0.005	2,500	200	93	<0.054	<0.270	51.9	<0.0060 <p></p>	<0.0052	<0.0054	1.35	18979	<0.0059	0.0674	0.44	<0.0062	0.0	0.032	0.016	0900'0>	<0.0060	<0.0060	970'0	25.73			
smudtsoroldsirT-2,1,1	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			<0.005	<0.005	<0.005	62.0	40.013	1100	<0.054	<0.270	<0.552		Y.	Y.	<0.00055		<0.0059	<0.0058	<0.0059	<0.0062	<0.0061	<0.0062	1900'0>	0900'0>		<0.0060	0.035	1.05			
onnthorochlairT-I,I,I	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.0055	< 0.0056	<0.005	<0.005	<0.005	0.25	40.011	40.11	<0.054	<0.270	<0.552	<0.0060	<0.0052	<0.0054	<0.00055	<0.0059	<0.0059	<0.0058	<0.0059	<0.0062	<0.0061	<0.0052	<0.0061	<0.0060	<0.00060	<0.00000>	229.642	1,000			
Lab Samole No.	W6120376-02	W6120376-04	W6120376-06	W6120376-08	W6120376-10	W6120376-12	W5090064-04	503198699	503198715	265075	270505	271016	293128	326333	108141	328356	326932	328587	874741	874742	874743	874739	291956	291957	291958	291959	291960	291962	291963	291964	291965	291966	291967			Teaning Goal	Il Cleaning GetA Illigrams per kilogram NA = Not Annileshi	are combined y Remediation s-Human
Sample Depth	5-7	5-7	5-7	5-7	5-7	5-7	3-5	11-13	11-13	10-12	14-16	18-20	4-0	6-6	6-8	8-9	10-12	8-9	12-14	14-16	18-20	14-16	2-4	4-6	5-6	4-6	4-6	4.6	3.4	4-6	2-4	2.4	2.4	urface Soil ⁽¹⁾	Subsurface Soil	II Non-Retidential C	H	chloroethene results lunagement Voluntur Tier II Cleanup Goal mental Response, Jr
Date Sampled	12/19/1996	12/19/1996	12/19/1996	12/19/1996	12/19/1996	12/19/1996	9/6/1995	3/1/2004	3/1/2004	5/2/2000	7/12/2000	2/17/2000	5/15/2001	70077116	011779002	9/17/2002	8/27/2002	9/18/2002	8/29/2003	8/29/2003	8/29/2003	8/29/2003	5/1/2001	5/1/2001	5/1/2001	5/1/2001	5/1/2001	5/1/2001	5/1/2001	5/1/2001	5/1/2001	5/1/2001	5/1/2001	For II Residential Cleanup Goals Subsurface Soil(1)	Der II Non-Residential Cleanup Goals Subsurface Soil	acceds the VRP Tier	CONTROL Organic Compounds mg/kg = VOCs = Volunie Organic Compounds mg/kg = Compounds mg/kg = Compounds mg/kg = Compounds mg/kg = Compounds mg/kg = Compounds mg/kg = Compounds mg/kg = Compounds mg/kg = Compounds	**Cel-1,2D-Microchlyler and Trans-1,2D-Microchem results are combined **Cel-1,2D-Microchlyler and Trans-1,2D-Microchem results are combined **The American of Terriconnessal Management Voluntary Remediation **Pagam Recource Guide. Agrendar Firet II Cetang Goals-Manat Health Evaluation by Office of Terriconnessal Response, July 1995.
N elama N elam	GP-1	GP-2	GP-3	GP-4	GP-5	9-dD	HP-1	IW-1	IW-2	KB-17	KB-20	KB-24	KB-33	KB-40	KB-46	KB-46	KB-46	KB-47	KB-48	KB-49	KB-50	KB-51	KB-i1	KB-il	KB-i2	KB-i3	KB-i4	KB-is	KB-i6	KB-i6	KB-i7	KB-i8	KB-i9	er II Residential C	er II Non-Residen	thered compound of	VOCs = Volatile Organic Compounds	is-1,2-Dichloroethy Indiana Department Program Resource Health Evaluation

Tablé 7a

Tablé 7a

Tablé 7a

Tablé 7a

Tablé 7a

Allication Gas Turbine Division, Plant 10

Allication Gas Turbine Division, Plant 10

Indianapolis, Indianapolis, Indiana

IDEA VRF #6991004

KERAMIDA Project No. 2829E

Reference 36 Page 130 Lable Ju. Subsandree Soil - Noch Page 130 Page 130

Date Sampled	Samp	Lab Sample No.		onndisorochisirT-f.1,1	Trichloroethene	ТейлогоПиототейния	1,2,3-Trichloropropane	onsxnədiyiləmixT-Þ,Z,I	susznadlydiamixT-2,£,1	Ануј асегате	Vinyl chloride	Xylenes, Total
5/1/2001	2.4	291968		<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	09000>	<0.012	<0.012	0900'0>
5/16/2001	2-4	293161		<0.0057	<0.00057	<0.00057	<0.0057	<0.00.057	<0.0057	<0.011	<0.011	<0.0002
5/18/2001	2.4	293309	<0.0065	<0.0065	<0.0065	<0.0065	<0.0065	<0.0065	<0.0065	<0.013	<0.013	<0.0065
5/16/2001	10-12	293165	<0.0057	<0.0057	4.1	<0.0057	<0.0057	<0.0057	<0.0057	<0.011	<0.011	<0.0057
5/16/2001	10-12	293166	<0.0056	<0.0056	2.9	<0.0056	<0.0056	<0.0056	<0.0056	<0.011	<0.011	<0.0056
5/16/2001	8-10	293170	<0.0054	<0,0054	0.58	<0.005\$	<0.0054	<0.0054	<0.0054	<0.011	<0.011	<0.0054
5/18/2001	8-10	293312	<0.024	<0.024	2.0	<0.024	<0.024	<0.024	<0.024	<0.049	<0.049	>0.026
5/18/2001	8-10	293313	<0.026	<0.026	3.8	<0.026	<0.026	<0.026	<0.026	<0.051	<0.051	<0.026
5/18/2001	8-10	293317	10	<0.0052	Ē	< 0.0052	<0.0052	<0.0052	0	<0.010	<0.010	<0.0052
5/18/2001	8-10		<0.0053	<0.0053	0,70	<0.0053	<0.0053	<0.0053	<0.0053	<0.011	<0.011	<0.0053
6.77/1905	8-10	2	_	500.05	-	NA	NA	NA	NA	<0.020	<0.000	<0.005
5001/86/9	18.20	W5060414-01	<0.005	S00.0>	<0.005	NA	NA	NA		<0.020	<0.010	<0.005
5001/00/9	8.10	WSD60414.02	2000	2000		V.V.	NA	VZ		<0.020	-01002	<0.000
5001/00/9	18.30	WSOGOTIAO3	50000	40.005	500.05	NA	NA	NAN	NA	<0.020	0000	<0.005
0.6571000	12.84	Wendowani	3000	0.005	01 0	NA	NA	N.V.	I	001.00	PU 0	2000
5061/3/0	28.30	WS0000K4.02	2000	5000	20005	NA	NA	NA		<0.020	-01002	5000>
0/4/1904	18.30	WS000064.03	Т	-0.005	0.17	NA.	NA.	NA.	N.A.	<0.020	01002	2000>
1/24/1997	3.5		Т	<0.005	<0.005	NA	VN	NA.	Γ	<0.020	<0.010	<0.005
1/23/1997	8-10	W7010365-02	П	<0.005	<0.005	NA	NA	NA	NA	<0.020	<0.010	<0.005
3/1/2004	11.13	503198723	< 0.0055	< 0.0055	=	< 0.0055	< 0.0055	< 0.0055	< 0.0055	< 0.11	< 0.0022	< 0.015
3/1/2004	13-15	503198731	< 0.0058 < 0.0058	< 0.0058	2.6	< 0.0058	< 0.0058 < 0.0058	< 0.0058		< 0.12	< 0.0023	< 0.017
7/10/1995	13-15	W5070142-01	<0.005	<0.005	0.26	NA	N.	NA		<0.020	<0.010	<0.005
7/14/1995	48-50	WS070171-01	<0.005	<0.000>	<0.005	NA	NA.	NA	NA.	<0.020	<0.010	<0.005
7/11/1995	18-20	WS070142-02	<0.005	<0.005	<0.005	NA	NA	NA	NA	<0.020	<0.010	<0.005
7/11/1995	38-40	WS070142-04	<0.005	<0.005	<0.005	NA	NA	NA		<0.020	<0.010	<0.005
7/11/1995	13-15	W5070142-03	<0.005	<0.005	8,3	NA	NA	NA	NA	<0.020	0.024	<0.005
7/11/1995	33-35	W5070142-05	<0.005	<0.005	0,0068	NA	NA	NA.		<0.020	<0.010	<0.005
1/31/1997	48-50	W7010425-02	<0.005	<0.005	<0.005	NA	NA.	NA		<0.020	<0.010	<0.005
1/31/1997	63-65	W7010425-03	<0.005	<0.005	<0.005	NA	NA	NA		<0.020	<0.010	<0.005
3/1994	2.4	NA	Y.	NA	0.045	NA	NA	NA		NA	<0.001	<0.003
3/1994	8-9	NA.	AZ.	NA	0.029	NA	NA	NA		Y.	<0.005	>0.016
3/1994	9-9	NA	NA.	NA	<0.001	NA	NA.	NA	NA	NA	<0.001	<0.003
3/1994	8-9	N.A.	NA.	NA	<0.120	NA	KZ	NA	N.A.	NA.	<0.120	1.
3/1994	14-16	NA	NA.	NA	2.5	NA	NA.	NA	NA	NA.	<0.120	<0,360
leanup Goals Su	Fier II Residential Cleanup Goals Subsurface Soil ⁽¹⁾		229.642	0.035	0.076	2810)	NA	1.59(3)	1.7400	NA	0.129	1,000
			I		l							

Date Sample Depth Date Sample Pepth Date Sample Pepth Date Sample Depth Date Sample Na. 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1	Date Sample Depth Sample Depth Sample Page Sample Depth Sample Depth Sample Depth Sample Depth Sample Page Sample Depth Sample Page Sample Depth Sample Page Sample Depth Sample Page Sample Depth Sample Na. Sample Depth Sample Na. Sample Depth Sample Na. Sample Depth Sample Na. Sample Depth Sample Na. Sample Depth Sample Na. Sample Na. Sample Depth Sample Na. Sample Na. Sample Na. Sample Depth Sample Na. Sample Depth Sample Na. Sample Na. Sample Depth Sample Na. Sample Depth Sample Na. Sampl								31	9	3	.0			
9/1992 8-10 NA -0.11 NA -0.11 NA -0.12 NA -0.12 NA -0.13 NA -0.13 NA -0.13 NA -0.13 NA -0.13 NA -0.10 NA NA NA NA NA NA -0.10 N	9/1992 8-10 NA -0.11 NA -0.12 NA	2	Date Samueled	Sample Depth	Left Sarrole No.	onndrooroldoirT-I,I,I	anadisoroldairT-2,1,	l'richloroethene	Trichlorofluoromethan	angorqoroldəirT-E,£,	nəxnədlydrəmirT-Þ,£,l	nəxnədlydəmirT-2,E,1	Vinyl acetate	Уілуі сіліогіас	Xylenes, Total
9/1992 8-10	9/1992 8-10	132	9/1992	8-10	NA	3.1	N.V.	120	NA	Y.	NA	YZ.	NA	DAY.	1
9/1992 8-10 NA -0.005 NA -0.005 NA NA NA NA NA -0.001	9/1992 8-10 NA -0.005 NA -0.005 NA NA NA NA NA NA -0.001	133	9/1992	3.5	NA	<0.63	N/N	14	NA	NA.	NA	ZA	NA.	<1.3	<0.630
p 9/1992 8.10 NA GD05 NA CD05 NA NA NA NA NA OD07 p 9/1992 8.10 NA 4006 NA NA NA NA 4000 p 6/2/1993 13-15 698(3 401 40.1 40.1 40.1 40.1 40.0 NA NA NA 60.1 60.1 60.1 40.1	9/1992 8-10 NA 401005 NA 601005 NA NA NA NA NA NA 601010	134	9/1992	8.10	NA	<0.005	N.X	<0.005	NA	NA	NA	NA.	NA	<0.010	<0.005
9/1992 8-10 NA 401005 NA 401005 NA NA NA NA NA 401010	9/1992 8-10 NA 40,006 NA 40,005 NA NA NA NA NA 40,010	135	9/1992	8-10	NA	<0.005	N.Y.	<0.005	NA	NA.	NA	NA	NA	<0.010	<0.005
GOZ1993 13.15 G698G3 G01 G0.1 G0.1 G1.1 G1.0 MA NA C1 G1.3 G1.0 G1.0 G1.0 G1.0 MA NA C1 G1.3 G1.0 G1.0 G1.0 G1.0 MA NA C1 G1.0	G-21993 13-15 G-9803 G-11 G-11 G-11 G-11 G-11 G-10 M-A N-A C-1 G-13	S Dup	9/1992	8.10	NA	<0.005	d'Z	<0.005	NA	N.A	NA	NA	NA	<0.010	< 0.005
pp 6021993 13-15 69804 «0.1 «0.1 «0.1 «1.0 NA NA (c) 5009 6021993 23-34 69805 «0.005 «0.005 «0.005 «0.005 «0.005 «0.005 «0.005 «0.001 »0.001 «0.001 «0.001 «0.005 «0.005 «0.005 «0.005 «0.001 »0.001 </td <td>pp 66/21/993 13-15 69/904 <0.1 <0.11 <0.10 NA NA <0.1 <0.50 6/21/993 23-30 69/904 <0.01</td> <0.005	pp 66/21/993 13-15 69/904 <0.1 <0.11 <0.10 NA NA <0.1 <0.50 6/21/993 23-30 69/904 <0.01	-145	6/2/1993	13-15	50869	<0.1	d0.1	40.1	<0.1	0.1>	NA	NA	12	<0.5	1.0>
6/21/993 23.30 698/05 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.00	6/21/993 23-30 698/5 6-0005 6	15 Dup	6/2/1993	13-15	69804	40.1	40.1	001.0>	<0.1	0.1>	NA	NA.	17	<0.500	<0.100
GOZ1993 13-15 GOSG GODOS GOD	GG21993 3.1-55 G6987 G-0.005 G.0.005 G.0.005 G.0.005 G.0.01 NA Act of 1 G-0.01	-145	6/2/1993	23-30	69805	<0.005	<0.005	<0.005	<0.0005	<0.01	NA	NA	<0.01	<0.01	<0.005
GG21993 23-25 G9807 G-0.005 G-0.005 G-0.005 G-0.007 G-0.01	GG/1993 23-25 G98/7 G-0.005 G-0.005 G-0.005 G-0.01 NA NA G-0.11	-146	6/2/1993	13-15	90869	<0.000>	<0.005	0.093	<0.005	10.0>	NA	NA	<0.01	<0.01	<0.005
GG31993 8.10 G9873 G01 G01 G01 G01 G10 NA NA G1 G15 G17 G10 NA NA G10 G15 G17 G1	GZ11993 S.10 G9873 G.01 G.01 D.01	146	6/2/1993	23-25	20869	<0.005	<0.005	<0.005	<0.005	10:0>	NA	NA	<0.01	<0.01	<0.005
GG31993 28.2-9 G9854 G0005 G0005 G0005 G0005 G0007 G0001 G	GG31993	147	6/3/1993	8-10	69873	<0.1	1.0>	23	40.1	0.1>	NA	NA	D	<0.5	<0.1
663(1993)	GALTIPPS S-10 GOSTS C-0.1 GO.1 GO.1 GO.1 GO.1 GO.1 GO.1 GO.1 GO.2 G	-147	6/3/1993	28-30	69874	<0.000>	<0.005	<0.005	<0.005	10.0>	NA	NA	<0.01	<0.03	<0.005
GAT1993	6.711993 23-25 66956 60005 6005	148	6/3/1993	8-10	69875		<0.1	14	<0.1	0.1>	NA	NA	D	<0.5	1.0>
G4411993 B-10 G9945 G-01 G-	G4411993 8-10 G6945 G-01 G-01 G-02 G-01 G-02 G-	148	6/3/1993	23-25	92869		<0.005	0.014	<0.005	10'0>	NA	NA	<0.01	<0.01	<0.005
6441993 3-5 66947 601 601 610 NA NA 61 610 6	G4411993 3-5 G6945 G-01 G-0	-149	6/4/1993	8-10	57669	<0.1	<0.1	0.2	<0.1	0.1>	NA	NA	<1	<0.5	<0.1
66417993 8-10 66987 <0.1 <0.1 <0.1 <0.1 <0.2 <0.2 <0.03 <0.076 28100 NA 1.5920 1.7420 NA 0.129 <0.129 sidedtail Cleanup Goals Subsurface Soil ⁽¹⁾ 1,000 1.05 28.73 1,0000 ⁽²⁾ NA 12.400 ⁽²⁾ NA 0.139	6.4411993 8-10 669847 <0.1 <0.1 <0.1 <0.1 <0.1 <0.5 <0.0 risid Cleanap Goals Subsurface Soil ⁽¹⁾ 1,000 1.05 2.573 1,000 ⁽²⁾ NA 1.59 ⁽²⁾ 1.74 ⁽²⁾ NA 0.129 add Tracella Residential Cleanap Goals Substrates Soil ⁽¹⁾ 1,000 1.05 2.573 1,000 ⁽²⁾ NA 3.06 ⁽²⁾ 1.24 ⁽²⁾ NA 0.13	.150	6/4/1993	3.5	97669	<0.1	1.05	4.2	<0.1	0.1>	NA	NA	Column </td <td>5.05</td> <td></td>	5.05	
229.642 0.055 0.076 281 ²⁰ NA 1.59 ²⁰ 1.74 ²⁰ NA 0.129 1.000 1.05 25.73 1,000 ²⁰ NA 3.66 ²⁰ 124 ²⁰ NA 0.13	229 642 0.055 0.076 251 ²⁰ NA 1.59 ²⁰ 1.74 ²⁰ NA 0.129 1.000 1.05 25.73 1.000 ²⁰ NA 3.06 ²⁰ 124 ²⁰ NA 0.13 1.000 1.05 1.000 1.05 1.000 1.05 1.000 1.05 1.000 1.0	3-150	6/4/1993	8:10	12669	<0.1	40.1	0.3	<0.1	<1.0	N.A.	NA	D	<0.5	<0.1
1,000 1.05 25,73 1,000 ⁽²⁾ NA 366 ⁽²⁾ 124 ⁽²⁾ NA 0.13 1	1,000 1.05 25.73 1,000 ⁽²⁾ NA 306 ⁽²⁾ 124 ⁽²⁾ NA 0.13 19 6 6 124 10 10 10 10 10 10 10 10 10 10 10 10 10	sidential	Cleanup Goals Sub	bsurface Soil ⁽¹⁾		229.642		0.076	281(2)	×Z	1.59(2)			0.129	1,00
Centro God	Termity Gold	n-Reside	otial Cleanin Goal	c Subsurface Soil	0	1.000	1.05	25.73	1,000		306(2)	124(2)		0.13	1,00
	impound covered, the VRPT for II Residented Chemisp Goal	A designation of the	Percends the VRP To-	v II New-Residential	Cleimin Gul										

Table 7a

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table 7b

Table

"Carriago and part Composition of the State of the Carriago and year to the Standard and the Carriago and th

²⁰Calculated using surrogate toxicity values and Tier II equations.
³⁰Source: EPA Region 3 Risk-flased Conscatration Table - October 1998

Reference	36 Page 132
0.35 (0.000)	Table 7b - Subsurface Soil - PAHs Page: Lof L
260 ³³ 2 0 0 0 3 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
(0.35) (0	
0 0 3 3 4 0 0 3	
(0.35) (0.36) (0.36) (0.35) (0	
(d. 36) (d. 36	96
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Response, July 1996
Column C	vironmental
68 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	y Office of En
### ##################################	Houth Evaluation by Office of 421/98.
666666666666666666666666666666666666666	lu-Haman Houlh E
(a) 3 (b) 3 (c) 3	II Cleanp Goa mediation Programediation
0.03	ppondix F Tier i Volennary Rei
Accomphibity/seac 1119 1119 1129 1138 1138 1138 1138 1138 1138 1138 113	ns cource Cuide, A cource Cuide, A fetto by Indian
0.039 (0.33 (0.34 (0.35	ans per kologia on Program Re din Technical M
Lab Sample No. 29130 29134 29134 29138 29134 291155 29135 29135 29135 29135 29135 29135 291955 291955 291955 291955 291956 29195	PARS a Polymedran Aronauch (Horocathons) PARS a Polymedran Aronauch (Horocathons) North and Aronauch (Horocathons) North Aronauch (Horocathons) On Calculanch using surrogate toxicity values and The II equations. On Calculanch using surrogate toxicity values and The II equations. On The I Health Protective Levels for Phenanthrens, Indomethane and Acrolein Technical Memo by Indiana Voluntary Response.
Sample Depth (feet) 2-4 2-4 8-10 8-10 8-10 8-10 8-10 12-14 14-15 1	cambons Absenbed 8310 real Management values and Tier II Phenarthrene, loo
RB-18 Sample No. Date Sample Depth Lab	PASS as Optimated a Voluntial Hydrocantronia Stangles analyzed using EPA SW 4566 Methon 10 Indiana Department of Environmental Mar 20 Calculated using surrogate toxicity values in 10 Tier I Health Protective Levels for Phenant
Sample No. KB-28 KB-29 KB-39 KB-39 KB-34 KB-34 KB-34 KB-34 KB-35 KB-35 KB-37 KB-35 KB-37 KB-35 KB-37 K	PATS = Polymac Samples analysos O Indiana Depart O Tier I Health P

Table 7b
Issurface Soil Analytical Results for PAHs (mg/kg)
Former General Matiors Corporation
Allison Gas Turbing Division, Plant 10
Indiangules, Indian
IDEA Vip #6091004
KERAMIDA Project No. 2829E

Reference 36 Lable 7c - Subsurface Soil - Metals Page 1.052 Page 1.052

KB-28 KB-39 KB-30 KB-31 KB-31 KB-31 SI15/2001 KB-34 SI15/2001 KB-34 SI15/2001 KB-34 SI15/2001 KB-34 SI15/2001 KB-34 SI16/2001 KB-36 SI16/2001 KB-36 SI16/2001 KB-36 SI16/2001 KB-36 SI16/2001 KB-36 SI16/2001 KB-36 SI16/2001 KB-36 SI16/2001 KB-36 SI16/2001 KB-36 SI16/2001 KB-40 SI16/2001 KB-40 SI16/2001 KB-40 SI16/2001 KB-40 SI16/2001 KB-40 SI16/2001 KB-40 SI16/2001 KB-40 SI16/2001 KB-40 SI16/2002 SI16/2002 SI16/200	2.4	100.000		Arsenic	Barium	Beryllium	Cadmium	Chromium	Copper	Total Lead Mercury	Melculy	Nickel	Selenium	Silver	Thallium	Total Zinc
	2.4		NA.	NA	NA	NA		1		<4.7	NA	NA		NA	NA	NA
	4-7		Y.Y	NA	NA	NA	19:0>	28	N.A.	<49	NA	NA		NA	NA	NA
	2-4		NA	NA	NA	NA	<0.55	ac .	NA	61	NA	N.A.		NA	NA	NA
	2-4		NA.	NA	NA	NA	<0.57	8.2	NA.	<4.6	NA	NA		NA	NA	NA
	2-4	T	NA	NA	NA	NA	<0.54	9.2	NA	<4.3	NA	NA		NA	NA	NA
	2-4	293145	NA	NA	NA.	NA	88	380	NA	24,000	NA	NA	NA	NA	NA	NA
	2-4		NA.	NA	NA	NA	<0.53	62	NA	12	NA	NA		NA	NA	NA
	2-4	Г	NA	NA	NA	NA	<0.54	6.5	NA	5.3	NA	NA		NA	NA	NA
	2.4	Г	NA	NA	NA	NA	<0.59	6E	NA	<47.	NA	NA		NA.	NA	NA
	2.4	Γ	NA.	ZA	NA	NA	<0.54	1.9	NA.	<4.3	NA	NA		NA	NA	NA
	2.4	293158	NA.	ZA	NA	NA	1.7	24	NA	8.4>	NA	NA		NA	NA	NA
	2-4	Г	YZ.	NA	NA				NA	789	Z.Z	NA		NA	NA	NA
	4-6		Y.Y.	NA	NA				NA	34,000	_	NA		NA	NA	NA
	8-9	Г	NA	NA	NA		NA	NA	NA	8(AZ.	NA		NA	NA	NA
	2.4	Г	NA	NA	NA				NA	25.1	NA	NA		NA	NA	NA
	4-6		NA	NA	NA				NA	.91	NA	NA		NA	NA	NA
KB-44 8/20/2002	8-9	326773	NA	NA	NA	NA	NA	NA	NA	<8.5	NA.	NA		NA	NA	NA
KB-45 8/26/2002	2.4		NA	NA	NA	NA			NA	544	NA AN	NA		NA	NA	NA
	4-6		NA	NA	NA	NA			NA NA	37	NA.	NA		NA	NA	NA
	8-9		NA.	NA	NA	NA			NA	9.8>	NA	NA		NA	NA	NA
	2.4		NA	NA	NA	NA			NA	147	NA	NA		NA	NA	NA
	4-6		NA	NA	NA	NA			NA	57.	NA	NA		NA	NA	NA
	8-9		NA	NA	NA	NA			NA	10	NA	NA	NA	NA	NA	NA
KB-46 8/27/2002	10-12	2	NA	NA	NA	NA			NA	9.8>	NA	NA	NA	NA	NA	NA
	2.4	5	NA	NA	NA	NA	NA	NA	NA	78.	NA	NA	NA	NA	NA	NA
KB-47 8/26/2002	4-6	326766	NA.	NA	NA	NA		NA	NA	33.	NA	NA	NA	NA	NA	NA
KB-47 8/26/2002	8-9	326767	NA	NA	NA	NA		NA	NA	<8.4	NA	NA	NA	NA	NA	VV
The II Recidential Cleanun Goals Subsurface Soil®	barrface Soil ⁽¹⁾		N.	438	10,000	118.605	730	7,300	54,000 (3)	400 (1)	87.6	10,000	7,300	7,300	NA	10,000
														0000		
Tier II Non-Residential Cleanup Goals Subsurface Soil(1)	als Subsurface Soil	lω	NA	438	10,000	118.6	730	7,300	54,000 (3)	1,000 (3)	97.6	10,000	7,300	7,300	NA	10,000
9	THE REAL PROPERTY.		17.7	10 40	100 3 500	NA	001.70	50.3000	NA	2.200	0.01-415	NA.	01-20	01-50	NA	NA
Common Background Ranges			NA	1.0 - 40	JUC-2,300		0.01	200 - 2000	TACK	007.7	٠		0.00	4	-	

Table 7c
Table 7c
Table 7c
Table 7c
Table 7c
Targe 3c
Table 7c
Targe 3c
Targe 3c
Targe 3c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Targe 4c
Tar

olo No	Date Samuled	Sample Depth	Lab Sample No.	Total	Total	Total	Total	Total	Total	Total	Total Lead	Total	Total	Total	Total	Total	Total Zinc
B-il	\$/1/2001	2.4	291956	NA	NA	NA	NA		240	Z	10,000	1000	NA	NA	NA	NA	NA
B-il	5/1/2001	4.6	291957	NA	NA	NA	NA	2.6	92	NA	280	NA	NA	NA	NA	NA	NA AZ
.B-i2	5/1/2001	9-9	291958	NA	NA	NA	NA	8.3	27	NA	830	NA	NA	NA	NA	NA	ZA
3B-13	5/1/2001	4-6	291959	NA	NA	NA.	NA	5.1	21	NA	800	NA	NA	NA	NA	NA	NA
B-i4	\$/1/2003	4.6	291960	NA	NA	NA	NA	<0.62	17	NA.	The same of	NA	NA	NA	NA	NA.	NA
B-i4	\$/1/2001	13,5-14	291961	NA	NA	NA	NA	1.2	27	NA	1,500	NA	NA	NA	NA	NA	NA
3B-15	5/1/2001	4-6	291962	NA	NA.	NA	NA	<0.61	91	NA	26	NA	NA	NA	NA	NA	NA
.B-i6	5/1/2001	3.4	291963	NA	NA	NA	NA	1,200	640	NA AZ	9,300	NA	NA	NA	NA	NA	NA
B-i6	5/1/2001	4-6	291964	NA	NA	NA	NA.	1.7	15	YZ.	10	NA	NA	NA	NA	NA	NA
(B-i7	5/1/2001	2.4	291965	NA	NA	NA	NA	<0.60	18	AZ.	1	NA	NA	NA.	NA	NA	NA
.B-i8	5/1/2001	2-4	291966	NA	NA	NA	NA	<0.60	13	AZ.	40	NA	NA	NA	NA	NA	NA
B-19	5/1/2001	2-4	291967	NA	NA	NA	NA	09:0>	14	NA.	<4.8	NA	NA	NA	NA	NA	NA
B-i12	5/1/2001	2-4	291968	NA	NA.	NA	NA	1.7	10	NA AN	86	NA	NA	NA	NA	NA	NA
B-i13	5/16/2001	2.4	293161	NA	NA	NA	NA	<0.57	H. W.	NA	THE REAL PROPERTY.	NA	NA	NA	NA	NA	NA
B-114	5/18/2001	2.4	293309	NA	NA	NA	NA	<0.65	26	NA.	<52.	NA	NA	NA	NA	NA	NA
B-i15	5/16/2001	2.4	293164	NA	NA	NA	NA	<0.59	111	NA.	<4.7	NA	NA	NA	NA	NA	NA
B-i16	5/16/2001	2.4	293169	NA	NA	NA	NA	<0.59	13		<4.7	NA	NA	NA	NA	NA	NA
B-i17	5/18/2001	2.4	293310	NA	NA	NA	NA	09.0>	17		<4.8	NA	NA	NA	NA	NA.	NA
117 Dup.	5/18/2001	2.4	293311	NA	NA	NA	NA	1.2	16		<4.7	NA	NA	NA	NA	NA	NA
B-i18	5/18/2001	2-4	293314	NA	NA	NA	NA	<0.60	18		<4.8	NA	NA	NA	NA	NA	NA
118 Dup.	5/18/2001	2-4	293315	NA	NA	NA	NA	<0.59	16		<4.7	NA	NA	NA	NA	NA	NA
B-i19	5/18/2001	2-4	293316	NA	NA	NA	NA	<0.60	20		<4.8	NA	NA	NA	NA	NA	NA
W10-1	03/1994	10-12	NA	NA	35	11>	NA		9	NA AN	4.8	0.1	NA	2.1	I>	NA	NA
810-1	03/1994	2.4	NA	NA	8	1 290	NA	20		NA	1,000	1.0	NA	9.1		NA	NA
310-2	03/1994	8-9	NA	NA	4	19	NA		9	NA.	1.6		NA	2.1	-	NA	NA
810-3	03/1994	4-6	NA	NA	3.6	3.00	NA	<- P	6	NA	5.4	1.0	NA	2,3	>	NA	NA
810-4	03/1994	8-9	NA	NA	7.	83	NA		22	NA.	E	<0.1	NA	9.0>	<1	NA	NA
810-5	03/1994	14:16	NA	NA	2	<ii></ii>	NA	P	*	NA	3.9	<0.1	NA	3,3	7	NA	NA.
Residentia	esidential Cleanup Goals Subsurface Soil(1)	ibsurface Soil(0)		NA	438	10,000	118.605	730	7,300	54,000 (5)	400 (3)	87.6	10,000	7,300	7,300	NA	10,000
								DE LA CONTRA	The state of								
Non-Resid	Non-Residential Cleanup Goals Subsurface Soil(1)	als Subsurface Soi	Iω	NA	438	10,000	118.6	730	7,300	54,000 ⁽³⁾	1,000 (3)	87.6	10,000	7,300	7,300	NA	10,000
n Backgru	n Background Ranges Co			NA	1.0 - 40	100 - 3,500	NA	0.01 - 70	5.0 - 3,000	NA	2-200	0.01 - 4.15	NA	0.1 - 2.0	0.1 - 50	NA	NA
compound	ompound exceeds the VRP Tier II Non-Residential Cleanup Goa	er II Non-Residentia	I Cleanup Goal		100000000000000000000000000000000000000												
punoduoo	exceeds the VRP TI	or II Residential Clo	ential Cleanup Goal														

Table 7c
Subsurface Soil Analytical Results for Metals (mg/kg)
Former General Motors Corporation
Allison Gas Turbine Division, Plant 10
Indianapolis, Indiana

KERAMIDA Project No. 2829E IDEM VRP #6991004

Program Resource Guide, Appendix F Tier II Cleanup Goals-Human Health mg/kg = miligrams per kilogram NA = Not. Applicable

D Indiana Department of Environmental Management Volantary Remediation

Evaluation by Office of Environmental Response, July 1996.

Discource: James Dragun. The Soil Chemistry of Hazardous Materials Table 3.1.

Native Soil Concentration of Various Elements: p.229, 1998.

3) Calculated using surrogate toxicity values and Tier II equation

Table 7c - Subsurface Soil - Metals Page 2 of 2

	Chloroethane	<5.0	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<>	9	<10.	<10.	<10.	<10.	<10.	<10.	<10.	9	9	<10.	<10.	<10.	23,161	VAN
	Chlorodibromomethane	6.0								5			<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	S	5	<5.0	<5.0	<5.0	NA	VV
	Chlorobenzene		<5.0										<5.0			<5.0				'O'		<5.0	<5.0	112(2)	2.040(2)
Sip L	Carbon tetrachloride	6.0	<5.0	<5.0	<5.0	6.0	<5.0	6.0	<5.0	9	9	65.0	6.0	6.0	<5.0	65.0	6.0	6.0	Q	9	65.0	6.50	6.0	NA	NA
	Carbon disulfide	<5.0	65.0	<5.0		<5.0		65.0	<5.0	9	O.		П	65.0	<5.0	€5.0	0.00	€5.0	S	0	6.0	<5.0	<5.0	1,060(2)	(2)000 01
	erf-Butylbenzene	NA	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0			0		6.0	6.0	<5.0	6.0	6.0	<5.0	5	5	6.0	<5.0	€5.0	64(2)	2)00C 01 [(2)0C0 1 [(2)0C0 1
	ec-gaţâlpeuzeue												<5.0				<5.0	<5.0		9		<5.0	€5.0	64(2)	
	əuəzuəqiAing-u		<5.0			6.0					\$		<5.0				<5.0			5			6.0	64(3)	1.000(2)
	Sromomethane		<10.			<10.	1				\$		<10.		<10.		<10.			0			<10.	NA	MA
S (ug/L)	ттоготот		5.0	<5.0	<5.0		<5.0		<5.0				<5.0		<5.0					<5			<5.0	NA	MA
s for VOC tration thant 10	3romothoromethane		× 0.5>		< 0.5>		> 0.5>						<5.0							9		<5.0		0.289(2)	46 162
Table 8a Geoprobe Groundwater Analytical Results for VOCs (ug/L) Former General Motors Corporation Aliison Gas Turbine Division, Plant 10 Indianapolis, Indiana IDEM VRP #6991004 KERAMIDA Project No. 2829E	Sromochloromethane																							NA	V.V
Table 8a vater Analytical Resul General Motors Corp Jas Turbine Division, Indianapolis, Indiana IDEM VRP #6991004 AMIDA Project No. 2	gromobenzene		0.6> 0.0		.0 <5.0		0.6> 0.		0.6> 0.		9				0.6> 0.		0.6> 0.	5.0 5		9	0	<5.0 <5.0	<5.0 <5.0	NA	1
oundwat ormer Ge llison Gas Ind IDI KERAM	əuəzuəş	NA O	0.65.0		0.6> 0.0		0.6> 0.		0.6> 0.0			0.6> 0.	0.6> 0.	0.6> 0.	0.6> 0.		0.6> 0.			5				5	7 00
pprobe G	erylonitrile	1 <5.0	<250 <5.0		50 <5.0		50 <5.0		50 <5.0		90 00	L	<250 <5.0		50 <5.0		50 <5.0	50 <5.0		<100 <5		<250 <5.0		NA	-
5	Acrolein	AN NA	T	П	Г	Г	Г	П	П		П	Г	<250 <2									250 <2	П	NA	-
	усегоне	NA O									<100 <1		<50 <2						<100 <1			<50 <2	Ť	3,040	000.01
	Lab Sample	W5090064-05 <20	_		260550 <	261735 <50	261736 <				50526185 <						263436 <			> 50548932 <					
	Sample Depth		۲	16-20	19-23	32-36	32-36	22.5-26.5	33-36	31-35	35-40	22-25	21-24	17-20	14-17	15-18	61-91	61-91	29-34	24.5-29.5	44-48	20-24	44-48	water (1)	u ·
	Date Compled	9/6/1995	3/1/2000	3/1/2000	3/1/2000	3/3/2000	3/6/2000	3/3/2000	4/6/2000	4/14/2000	4/14/2000	4/5/2000	4/5/2000	4/5/2000	4/6/2000	4/6/2000	4/6/2000	4/6/2000	5/3/2000	5/3/2000	7/11/2000	7/11/2000	7/11/2000	mup Goals - Ground	
	Sommels No.	HP.1	KB-1W	KB-2W	KB-3W	KB-4W	KB-5W	KB-6W	KB-7W	KB-8W	KB-9W	KB-10W	KB-11W	KB-12W	KB-13W	KB-14W	KB-15W	KB-15W Dup.	KB-16W	KB-17W	KB-18W	KB-19W	KB-19W	Tier II Residential Cleanup Goals - Groundwater ⁽¹⁾	O I O IO II II II WAS IN

VOCs = Volatile Organi Samples analyzed using EPA SW-846 Method 8260 Samples analyzed using EPA SW-846 Method 8260 µg/L = micrograms per liter NA = Not Applicable

⁽¹⁾ Indiana Department of Environmental Management Voluntary Remediation Program Resource Guide, Appendix F Trer II Cleanup Goals-Human Health Evaluation by Office of Environmental Response, July 1996.
⁽²⁾ Calculated using surrogate toxicity values and Trer II equations.

Table 8a - Geoprobe Groundwater - VOCs Page 1 of 15

Сhlогоеthane	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	0.5	0.50	0.50		23,161	NA	
Chlorodibromomethane	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	€5.0	<5.0	<5.0	6.0	<1.0	0.1>	<1.0		NA	NA	
Chlorobenzene	<5.0	6.0	6.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<1.0	<1.0	<1.0		11200	2,040	
Carbon tetrachloride											<5.0			<1.0		NA	NA	
201100000 1000 100											<5.0			<1.0		1,060'	1,020(2) 10,200(2)	
tert-Butylbenzene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	65.0	<5.0	<5.0	<5.0	<5.0	<1.0	<1.0	<1.0		64(4)	1,020	
sec-gnţλjpeuzeue	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	0.6>	<5.0	<5.0	<1.0	<1.0	<1.0		64,4	1,020-2	
u-gariλjpenzene	<5.0	0.5>	<5.0	0.6>	<5.0	<5.0	65.0	<5.0	<5.0	<5.0	<5.0	<1.0	0.1>	<1.0		64(5)	1,020	
Вгототеграпе	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<5.0	<5.0	<5.0		NA	NA	
Вготобогт	<5.0	<5.0	<5.0	0.5	0.5>	<5.0	0.5	65.0	<5.0	65.0	<5.0	<1.0	0.1>	0.1>		NA	NA	
Bromodichloromethane	6.0	6.0	65.0	0.5>	65.0	0.50	65.0	65.0	<5.0	€5.0	65.0	0.1>	0.1>	0.1>		0.289(2)	46.1(2)	
Вготосијоготена	6.0	<5.0	<5.0	65.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<1.0	<1.0	<1.0		NA	NA	
Bromobenzene		<5.0									0.5>					NA	NA	
Benzene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<1.0	0.1>	<1.0		5	98.6	
Acrylonitrile	<250	<250	<250	<250	<250	250	250	<250	<250	<250	<250	<50.0	<50.0	<50.0		NA	NA	
Acrolein	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	<50.0	<50.0	<50.0		NA	NA	
Acetone	<50	05>	0\$>	050	05>	050	<50	<50	050	05>	<50	<20.0	<20.0	<20.0		3,040	10,220	
Lab Sample No.	270502	270503	270752	270753	270754	270755	271017	271018	271020	271019	271397	326931	874746	874747				
Sample Depth (feet)	20-24	31-35	30-34	26-30	18-22	26-30	32-36	32-36	20-24	32-36	28-32	20-24	12-17	18-22		dwater (1)	iroundwater (1)	
Date Sampled	7/12/2000	7/12/2000	7/13/2000	7/13/2000	7/14/2000	7/14/2000	7/17/2000	7/18/2000	7/18/2000	7/18/2000	7/24/2000	8/27/2002	8/29/2003	8/29/2003		r II Residential Cleanup Goals - Groundwater (1)	II Non-Residential Cleanup Goals - Groundwater (I)	
Sample No.	KB-20W	KB-20W	KB-21W	KB-22W	KB-23W	KB-23W	KB-24W	KB-25W	KR-26W	KB-26W	KB-27W	KB-39W	KB-48W	KB-49W	THE REAL PROPERTY.	r II Residential Cle	Il Non-Residenti	

Table 8a
Geoprobe Groundwater Analytical Results for VOCs (ug/L)
Former General Motors Corporation
Allison Gas Turbine Division, Plant 10
Indianapolis, Indiana
IDEM VRP #6991004
KERAMIDA Project No. 2829E

VOCs = Volatile Organi Samples analyzed using EPA SW-846 Method 8260 Samples analyzed using EPA SW-846 Method 8260

1g/L = micrograms per liter NA = Not Applicable

¹⁰ Indiana Department of Environmental Management Voluntury Remediation Program Resource Guide, Appendix F Tier II Cleanup Goals-Human Health Evaluation by Office of Environmental Response, July 1996.
²⁰ Calculated using surrogate ioxicity values and Tier II equations.

Table 8a - Geoprobe Groundwater - VOCs Page 2 of 15

	Chloroethane	<5.0	<5.0	<5.0	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<5.0	131.00	75,101	NA
	Chlorodibromomethane	<1.0	<1.0	Ť			<5.0				<5.0					0.1>	V.V.	WW	NA
	Chlorobenzene	<1.0	<1.0								<5.0		-			<1.0	(7)011	1112	2,040 ⁽²⁾
	Carbon tetrachloride	<1.0	<1.0	<1.0	6.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	0.1>	MA	INA	NA
	Carbon disulfide	<1.0			1						<5.0					<1.0	1 000(2)	1,000	10,200(2)
	tert-Butylbenzene	<1.0	<1.0	<1.0	<5.0	6.0	6.0	6.0	6.0	<5.0	6.0	<5.0	<5.0	<5.0	<5.0	<1.0	(2)	60	1,020(2)
	sec-gntAlpenzene	0.1>	(1.0	0.1>	65.0	65.0	<5.0	65.0	65.0	65.0	6.0	65.0	65.0	6.0	<5.0	<1.0	(7)4(7)	100	1,020(2)
	u-Butylbenzene	<1.0	<1.0	0.1>	65.0	65.0	65.0	<5.0	65.0	65.0	<5.0	€5.0	65.0	65.0	0.5>	<1.0	(7)	10	1,020
	Bromomethane	<5.0	<5.0	<5.0	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	65.0		NA	NA
	Вготогогт	<1.0	<1.0	<1.0	<5.0	<5.0	<5.0	<5.0	65.0	65.0	65.0	<5.0	<5.0	<5.0	6.0	0.1>		NA.	NA.
a 14 2829E	Bromodichloromethane	<1.0	0.1>	<1.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	1.2	20000	0.289	46.1(2)
Alison Cas y at Due Livision, right at Indianapolis, Indiana IDEM VRP #6991004 KERAMIDA Project No. 2829E	Bromochloromethane	<1.0	<1.0	<1.0	6.0	65.0	<5.0	65.0	65.0	65.0	65.0	0.5>	<5.0	<5.0	65.0	<1.0	11.	NA	NA
Indianapo IDEM VR AMIDA P	Втотореплепе	0.1>	<1.0	<1.0		65.0			65.0			6.0				<1.0		ZZ	NA
KER	Benzene		<1.0	<1.0	6.0	6.0	6.0	65.0	65.0	65.0	65.0	6.0	65.0	65.0	65.0	<1.0		0	9.86
	Acrylonitrile			<50.0	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	<50.0		NA	NA
	Acrolein	<50.0	<50.0	<50.0	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	0.05>		NA	NA
	Acetone	<20.0	<20.0	<20.0	050	05>	050	050	<50	<50	050	050	<50	<50	050	<20.0	-	3,040	10,220
	Lab Sample No.	874748	874744	874745	291969	291970	293162	293167	293320	293322	260553	260555	260557	260559	260561	874749			
	Sample Depth (feet)	20-24	15-20	15-20	13-17	13-17	13-18	13-18	14-19	14-19	NA	NA	NA	NA	NA			dwater	roundwater (1)
	Date Sampled	8/29/2003	8/29/2003	8/29/2003	5/1/2001	5/1/2001	5/16/2001	5/16/2001	5/18/2001	5/18/2001	3/2/2000	3/2/2000	3/2/2000	3/2/2000	3/2/2000	8/29/2003		eanup Goals - Groun	al Cleanup Goals - G
	Sample No.	KB-50W	KB-51W	KB-51W Dup	KB-i2W	KB-i12W	KB-i14W	KB-i15W	KB-i17W	KB-i17 Dup.	STA-GW	STB-GW	STC-GW	WD-GTS	STE-GW	TRIP		Ter II Residential Cleanup Goals - Groundwater	Tier II Non-Residential Cleanup Goals - Groundwater

Geoprobe Groundwater Analytical Results for VOCs (ug/L) Former General Motors Corporation Allison Gas Turbine Division, Plant 10

VOCS = Volatile Organi Samples analyzed using EPA SW-846 Method 8260 Samples analyzed using EPA SW-845 Method 8260 µg/L = micrograms per liter
NA = Not Applicable

Page 137

	ens-fis-pichloroethene	3,900	750	161	<5.0	570	170	<5.0	8.8	5,600	<5	<5.0	<5.0	<5.0	65.0	<5.0	21	33	300	0,	<5.0	65.0	<5.0	02		1,022
	J.I.Dichloroethene	<5.0	<5.0	<5.0		<5.0	<5.0		<5.0	10			<5.0				<5.0	<5.0					65.0	7		7
	J.Z-Dichloroethane	6.0	<5.0	<5.0	<5.0	0.6>	<5.0	<5.0	<5.0	O,	5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	S	5	<5.0	<5.0	<5.0	4		31.4
	1,1-Dichloroethane	<5.0	<5.0	<5.0	0.5>	<5.0	0.5>	<5.0	<5.0	0	\$	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<>	0	<5.0	<5.0	<5.0	640	200	10,220
	-2-oroldəid-i-d-sarat butene	NA	<50	<50	<50	<50	<50	<50	<50	<100	<100	<50	<50	<50	<50	<50	<50 <50	050	<100	<100	<50	050	-20 -20	N.N.	W	NA
	Dichlorodifluoromethane	NA	<10	<10	<10	<10	<10	<10	<10	5	<5	<10	<10	<10	<10	<10	<10	<10	\$	\$	<10	<10	<10	MA	THE STATE OF	NA
	ensznedoroldsiU-4,1	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5	\$	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	0	⟨?	<5.0	<5.0	<5.0	75	(1)	119.2
	J.3-Dichlorobenzene	<10	65.0	65.0	65.0	0.50	0.50	65.0	6.0	O,	Q	65.0	65.0	6.0	<5.0	65.0	€5.0	65.0	Q	S	<5.0	€5.0	65.0	009	000	NA
	onsznadoroldsid-2,1	<10	<5.0	<5.0	<5.0	0.5	<5.0	6.0	<5.0	\$	0	65.0	<5.0	0.5>	<5.0	<5.0	<5.0	<5.0	\$	9	<5.0	<5.0	0.5>	600	000	9,198
s (ug/L)	Dibromomethane	NA	<10.	<10.	<10.	<10.	<10.	<10.	<10.	5			<10.	<10.	<10.	<10.	<10.	<10.	9	O,	<10.	<10.	<10.	V.N	INA	NA
s for VOC oration lant 10	L,2-Dibromoethane (EDB)			6.0		6.0		65.0			9				<5.0			<5.0			<5.0	<5.0	<5.0	MA	NA	NA
Table 8a Groundwater Analytical Results for VC Former General Moiors Corporation Allison Gas Turbine Division, Plant 10 Indianapolis, Indiana IDEM VRR #6991004 KERAMIDA Project No. 2829E	-6-omordi(1-2,1 chloropropane												<50.	-50.	<50.	<50.	<50.	<50.	5	\$	<50.	<50.	<50.	MA	N	AN
Table 8a General Motors Corp Gas Turbine Division, Indianapolis, Indiana IDEM VRP #6991004 AMIDA Project No. 2	2-Chloroethyl vinyl ether		<50°	<50.	<50.			<50.					<50.									<50.		111	NA	NA
Table 8a Geoprobe Groundwater Analytical Results for VOCs (ug/L) Former General Motors Corporation Allison Gas Turbine Division, Plant 10 Indianapolis, Indiana IDEM VRP #6991004 KERAMIDA Project No. 2829E	f-Chlorotoluene		650			<5.0		<5.0			5			<5.0		<5.0				\$		<5.0	<5.0	N.A.	NA	NA
Geoprobe	2-Chlorotoluene		65.0		6.0			<5.0		9		0.				6.0	7.5	<5.0		5	65.0	<5.0	<5.0	11.4	NA	NA
	Chloromethane		<10.			<10.								<10.		<10.					<10.	<10.	<10.	***	NA	NA
	Chloroform												<20											000	100	468.9
	Lab Sample No.	34-05		П			Г	Г				Г	П					263437				270500				
	Sample Depth	7	10-15	16-20	19-23	32-36	32-36	22.5-26.5	33-36	31-35	35-40	22-25	21-24	17-20	14-17	15-18	16-19	16-19	29.34	24.5-29.5	44-48	20-24	44-48	00	dwater	roundwater (1)
	Date Sampled	9/6/1995	3/1/2000	3/1/2000	3/1/2000	3/3/2000	3/6/2000	3/3/2000	4/6/2000	4/14/2000	4/14/2000	4/5/2000	4/5/2000	4/5/2000	4/6/2000	4/6/2000	4/6/2000	4/6/2000	5/3/2000	5/3/2000	7/11/2000	7/11/2000	7/11/2000	-	anup Goals - Groun	d Cleanup Goals - G
	Sample No.	HP-1	KB-1W	KB-2W	KB-3W	KB-4W	KB-5W	KB-6W	KB-7W	KB-8W	KB-9W	KB-10W	KB-11W	KB-12W	KB-13W	KB-14W	KB-15W	KB-15W Dup.	KB-16W	KB-17W	KB-18W	KB-19W	KB-19W		Fier II Residential Cleanup Goals - Groundwater	Tier II Non-Residential Cleanup Goals - Groundwater (d

VOCS = Volatile Organi Samples analyzed using EPA SW-846 Method 8260 Samples analyzed using EPA SW-846 Method 8260 pg/L = micrograms per liter
NA = Not Applicable

¹⁰ Indiana Department of Environmental Management Voluntary Remediation Program Resource Guide, Appendix F Tier II Cleanup Goals-Human Health Evaluation by Office of Environmental Response, July 1996.
²⁰ Calculated using surrogate toxicity values and Tier II equations.

Table 8a - Geoprobe Groundwater - VOCs Page 4 of 15

	on-disorothene	21	110	66	9.4	7.1	65.0	€5.0	5.0	160	<5.0	65.0	<1.0	0.1.	<1.0	- CAN	70	1 000	1,022	
	1,1-Dichloroethene	<5.0	5.0	<5.0	5.0	5.0				5.4		<5.0			<1.0		7			
	J.2-Dichloroethane	<5.0		<5.0						65.0					<1.0		5		31.4	
	1,1-Dichloroethane	<5.0		<5.0						<5.0		<5.0			<1.0		640	00000	10,220	
	-S-oroldoid-b,t-snert butene		<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	0.6>	<5.0	<5.0	No. of the last of	NA		NA	
	Dichlorodifluoromethane	<10		<10						<10.					<1.0		NA		NA	
	J.4-Dichlorobenzene	65.0	<5.0	<5.0					<5.0		<5.0	65.0	<1.0		<1.0		7.5	0011	119.2	
	3-3-Dichlorobenzene	<5.0	<5.0	<5.0	<5.0	65.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<1.0	<1.0	<1.0		009		NA	
	1,2-Dichlorobenzene	6.0		65.0								6.0	0.1>	0.1>	<1.0		009	0000	9,198	
	Dibromomethane	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	0.1>	<1.0	<1.0		NA	11.0	NA	
829E	1,2-Dibromoethane (EDB)	<5.0	<5.0		<5.0						<5.0		<5.0		<5.0		NA		NA	
Indianapolis, Indiana Indianapolis, Indiana IDEM VRP#6991004 KERAMIDA Project No. 2829E	1,2-Dibromo-3- chloropropane		<50.	<50.	<50.	-20,	<50.	<50.	<50.	<50.	<50.	<50.	<5.0	<5.0	<5.0		NA		NA	
Indianapolis, Indiana IDEM VRP #6991004 AMIDA Project No. 2	2-Chloroethyl vinyl ether	<50.		<50.		10									6.0		NA		NA	
KER	4-Chlorotoluene	6.0	<5.0	6.0	65.0	6.0	<5.0	<5.0	6.0	6.0	65.0	<5.0	<1.0	0.1>	<1.0		NA		NA	
	2-Chlorotoluene	<5.0	<5.0	65.0	<5.0	6.50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<1.0	<1.0	<1.0		NA		NA	
- 4	Chloromethane	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	65.0	6.0	6.0		NA		NA	
	Chloroform	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<1.0	<1.0	<1.0		100	0 000	468.9	
	Lab Sample No.	270502	270503	270752	270753	270754	270755	271017	271018	271020	271019	271397	326931	874746	874747					Cleanup Goal
	Sample Depth (feet)	20-24	31-35	30-34	26-30	18-22	26-30	32-36	32-36	20-24	32-36	28-32	20-24	12-17	18-22		dwater (1)		roundwater	Ion-Residential Clear
	Date Sampled	7/12/2000	7/12/2000	7/13/2000	7/13/2000	7/14/2000	7/14/2000	7/17/2000	7/18/2000	7/18/2000	7/18/2000	7724/2000	8/27/2002	8/29/2003	8/29/2003		anup Goals - Groun	-	I Cleanup Goals - C	eds the VRP Tier II h
	Sample No.	KB-20W	KB-20W	KB-21W	KB-22W	KB-23W	KB-23W	KB-24W	KB-25W	KB-26W	KB-26W	KB-27W	KB-39W	KB-48W	KB-49W		Tier II Residential Cleanup Goals - Groundwater II		Ter II Non-Residential Cleanup Goals - Groundwater	Detected compound excer

Table 8a
Geoprobe Groundwater Analytical Results for VOCs (ug/L)
Former General Motors Corporation
Allison Gas Turbine Division, Plant 10

VOCs = Volatile Organi Samples analyzed using EPA SW-846 Method 8260 Samples analyzed using EPA SW-846 Method 8260

μg/L = micrograms per liter NA = Not Applicable

⁽¹⁾ Indiana Department of Environmental Management Voluntary Remediation Program Resource Guide, Appendix F Tier II Cleanup Goals-Human Health Evaluation by Office of Environmental Response, July 1996.

(2) Calculated using surrogate toxicity values and Tier II equations.

Table 8a - Geoprobe Groundwater - VOCs Page 5 of 15

	1,1-Dichloroethene	0.1>	2	2	0.5>	0.5>	0.5>	0.5>	0.5>	0.5>	0.5>	<5.0	<5.0	<5.0	0.5>	<1.0	7	-
	onadooroldoid-2,1	0.15	<1.0	0.15	6.0	6.0	6.0	<5.0	6.0	5.0	65.0	6.0	6.0	6.0	6.0	0.15		21.4
	1,1-Dichloroethane	<1.0	<1.0		€5.0			€5.0								0.1>	640	0000
	trans-1,4-Dichloro-2- butene		5.0					<50									VZ	VIV.
	Dichlorodifluoromethane							<10				100					VZ.	N. A.
Ħ	9n-scholorobenzene	<1.0 ×						<5.0									75	110.9
	snsxnsdovoldsiQ-£,1	> 0.1						> 0.6>								<1.0	009	NA.
	J.2-Dichlorobenzene	> 0.1						> 0.5>								> 0.1	009	001.00
	Dibromomethane	<1.0														> 0.1	- AN	VIV.
E E	(EDB) Libromocthane						200	.01 <10.								0.	NA.	100
Indianapolis, Indiana Indemapolis, Indiana IDEM VRP #6991004 KERAMIDA Project No. 2829E	1,2-Dibromo-3- chloropropane							0. <5.0		0.5>				0. <5.0		0.65.0	NA	N. IV
Indianapolis, Indiana IDEM VRP #6991064 AMIDA Project No. 2	2-Chloroethyl vinyl ether 1,2-Dibromo-3-															0.0	42	100
IDE IDE KERAM	4-Chlorotoluene	0 <5.0						0 <50.									NA	110
e .	2-Chlorotoluene	0 <1.0	0 <1.					0 <5.0									VA	NA NA
	Chloromethane	0 <1.0	0 <1.					0.5>								П	NA	NA.
	Сирогого	0 <5.0				Г		<10.			Г	Г	Г			П	901	
	E Chloroform															ш		
	Lab Sample No.	874748	874744	8747	2919	2919	2931	293167	2933	2933	2605	260555	2605	2605	2605	874749		No.
	Sample Depth	20-24	15-20	15-20	13-17	13-17	13-18	13-18	14-19	14-19	NA	NA	NA	NA	NA		donners (I)	Ilwater 113
	Date Sampled	8/29/2003	8/29/2003	8/29/2003	5/1/2001	5/1/2001	5/16/2001	5/16/2001	5/18/2001	5/18/2001	3/2/2000	3/2/2000	3/2/2000	3/2/2000	3/2/2000	8/29/2003	Coole County	anup Coais - Cround
	Sample No.	KB-50W	KB-51W	KB-51W Dup	KB-i2W	KB-i12W	KB-i14W	KB-i15W	KB-i17W	KB-i17 Dup.	STA-GW	STB-GW	STC-GW	STD-GW	STE-GW	TRIP	Cont. Decidential Clausers Couls. Consumptions	Her II Kesidentiai Cieanu Coais - Cronidwater

is-1,2-Dichloroethene

Table 8a Geoprobe Groundwater Analytical Results for VOCs (ug/L) Former General Motors Corporation Allison Gas Turbine Division, Plant 10

Detected compound exceels the WRP Terr II Non-Residential Clearup Goal Detected compound exceels the WRP Terr II Residential Clearup Goal Detected compound a Selous in WRP Terr II Residential Clearup Goal Detection compound a Selous in SWP Terr II Residential Clearup Goal OCCS = Violatic Organi Semples analyzed using EPA SW-846 Method 8260 Samples analyzed using EPA SW-846 Method 8260

Samples analyzed using EPA SW-846 Method 8260

LgL.= micrograms per liter

Na = Not Applicable

Undiana Department of Environmental Management Voluniary Remediation

Program Resource Guide, Appendix F. Trer II Cleanup Goals-Human Health

Evaluation by Office of Environmental Response, July 1996.

(2) Calculated using surrogate loxicity values and Tier II equations.

Table 8a - Geoprobe Groundwater - VOCs Page 6 of 15

																								R	e'	fei	re	nc	€	• 3	86
Methylene chloride	<5.0	<10.	<10.	<10.	710	210	<10.	<10.	<10.	0	0	<10.	<10.	<10.	<10.	<10.	<10.	<10.	Q	Ŷ	<10.	<10.	<10.	6.30(2)	381(2)						
b-Isopropyltoluene	NA	65.0	<5.0	250	250	200	0.0	0.65	<5.0	0	0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	O,	φ.	<5.0	<5.0	<5.0	445(2)	10,200(2)						
eobropylbenzene		<5.0	<5.0	050	000	0.0	0.0	<5.0	<5.0	O	S	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	'0	9	0.50	0.5	<5.0	(2)689	10,200(2)						
Годоинецивие	NA	<10.	<10.	<10	710	×10.	<10.	<10.	<10.	<10	<10	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10	<10	<10.	<10.	<10.	NA	NA						
Hexachlorobutadiene	NA	<5.0	050	200	0.00	0.65	0.0	<5.0	<5.0	0	5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<>	\$	<5.0	<5.0	<5.0	10	36.7						
эпопвхэН-2	<20	<50.	05>	030	.00	.000	20.	<50.	<50°.	<10	<10	<50.	<50.	<50.	<50.	<50.	<50.	<50.	<10	<10	<50.	<50.	<50.	NA	NA						
Ethyl methacrylate	NA		<10	210	×10.	<10.	<10.	<10.	<10.	<100	<100	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<100	<100	<10.	<10.	<10.	NA	O NA						
сціλ]peuzene	<5.0	<5.0	050	980	0.00	0.0	0.0	0.0	0.50	8	9	0.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	9	\$	<5.0	<5.0	<5.0	002	10,220						
Sthyl Acetate	NA	T	NA	NIA	INA	NA	VA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA						
oroproporopropene	5.6	T	T	T	T			<5.0					<5.0					<5.0			<5.0			NA N	NA NA						
1. Dichloropropene	0.0	T	T	T	T			0.6>0		0					Ì		0.6> 0.0			1	0 <5.0			0.850 ⁽²⁾ N	28.6 ⁽²⁾ N						
-2,2-Dichloropropane		T	T	T	0.00	1						0.650	0.6> 0.			0.6> 0.0	0.6> 0.0	0.65.0		5>		.0 <5.0	.0 <5.0	NA 0.	NA 2						
-5-Dichloropropane	NA NA			I					<5.0 <5.	< < > < < > < < > < < > < < > < < > < < > < < < > < < < > < < < < > < < < > < < < > < < < > < < < > < < < < > < < < > < < < < > < < < < > < < < > < < < > < < < > < < < > < < < > < < < > < < < < > < < < > < < < > < < < > < < < > < < < > < < < > < < < > < < < < > < < < > < < < > < < < > < < < > < < < > < < < > < < < <		65.0	6.0	5.0 5	5.0 5	<5.0 <5.0	5.0	<5.0 <5.0		5	<5.0 <5	<5.0 <5.0	<5.0 <5.0	NA	NA						
.2-Dichloropropane										5									9	5				NA	NA						
эпэгілэотоІлісі-С.1-глят	12 <5.0	17 750	1	T	1				0.65.0	19 65		0.650	0 <5.0	0.650	0.65.0	0.650	0 <5.0	0.650	17 0	ď	0.65.0	0.65.0	0 <5.0	128(2)	2,040(2)						
mple	364-05	848	0 37	T	I				138 <5.0	2177						435 <5.0			8940	8932 <5		500 <5.0			2		092			alth	
h Lab Sample	W5090064-05	260548	060540	2007	260550	261735	261736	261737	263438	5052617	50526185	263430	263431	263432	263433	263435	263436	263437	50548940	50548932	270499	270500	270501			Jeanup Goal up Gaal	up Cott 46 Method 8		Demediatio	s-Human He	ns.
Sample Depth	7	10.15	00 91	07-01	19-23	32-36	32-36	22.5-26.5	33-36	31-35	35-40	22-25	21-24	17-20	14-17	15-18	16-19	61-91	29-34	24.5-29.5	44-48	20-24	44-48	dwater (1)	roundwater	Non-Residential Clean	Residential Clear using EPA SW-8	d 8260	Contract Volunter	r II Cleanup Goal	nd Tier II equatio
Proto Complet	9/6/1005	2// /2000	2/1/2000	3/1/2000	3/1/2000	3/3/2000	3/6/2000	3/3/2000	4/6/2000	4/14/2000	4/14/2000	4/5/2000	4/5/2000	4/5/2000	4/6/2000	4/6/2000	4/6/2000	4/6/2000	5/3/2000	5/3/2000	7/11/2000	7/11/2000	7/11/2000	ier II Residential Cleanup Goals - Groundwater (1)	Cer II Non-Residential Cleanup Goals - Groundwater (1)	ected compound exceeds the VRP Tier II Non-Residential Cleanup Goal ected compound exceeds the VRP Tier II Residential Cleanup Goal	Detected compound is below the VRP Tier II Residential Clearup Gost VOCs = Volatile Organi Samples analyzed using EPA SW-846 Method 8260	Samples analyzed using EPA SW-846 Method 8260 ag/L = micrograms per liter	NA = Not Applicable	Intuina Legaluten of Livingonineara managanea voiman neuronaavan Program Resource Guide, Appendix Trier II Cleanup Goals-Human Health Endivision by Offices of Environmental Resources (100)	(2) Calculated using surrogate toxicity values and Tier II equations.
N	HD.1	ALL GA	ND-1W	KB-2W	KB-3W	KB-4W	KB-5W	KB-6W	KB-7W	KB-8W	KB-9W	KB-10W	KB-11W	KB-12W	KB-13W	KB-14W	KB-15W	KB-15W Dup.	KB-16W	KB-17W	KB-18W	KB-19W	KB-19W	I Residential Clt	I Non-Residenti	ed compound exc	ed compound is = Volatile Organ	Samples analyzed using EP µg/L = micrograms per liter	NA = Not Applicable	ogram Resource (culated using surn

Table Su
Geoprobe Groundwater Analytical Results for VOCs (ug/L)
Former General Motors Corporation
Allison Gas Turbine Division, Plant 10
Indianapolis, Indiana
IDEM VRP #6991004
KERAMIDA Project No. 2829E

Table &a - Geoprobe Groundwater - VOC Page 8 of

	Methylene chloride	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	65.0	<5.0	65.0	6.30 ⁽¹³⁾	38100
	p-Isopropyltoluene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<1.0	<1.0	<1.0	445(1)	10,200(2)
	Isopropylbenzene	<5.0	65.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<1.0	<1.0	<1.0	(2)689	10,200(2)
	lodomethane	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<5.0	65.0	6.0	V.	V.
	Hexachlorobutadiene	<5.0	<5.0	<5.0	<5.0	0.5>	0.5>	0.5	0.5>	0.5>	<5.0	<5.0	<5.0	<5.0	<5.0	10	36.7
	2-Hexanone	<50.	<50.	<50.	<50.	<50.	<50.	<50.	<50.	<50.	<50.	<50.	<12.5	<12.5	<12.5	NA	NA
	Ethyl methacrylate	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	65.0	6.0	65.0	NA.	NA
	Ethylbenzene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<1.0	<1.0	<1.0	700	10,220
(ug/L)	Ейруі Асеівіе		NA	NA													
Geoprobe Groundwater Analycial Results for VOCs (ug/L.) Former General Motors Corporation Allison Gas Turbine Division, Plant 10 Indianapolis, Indiana IDEM VRP #6991004 KERAMIDA Project No. 2829E	snaqorqorolichloropene	65.0	65.0	65.0	65.0	65.0	<5.0	65.0	<5.0	<5.0	65.0	<5.0	<1.0	0.1>	0.1>	NA	NA
Groundwater Amphical Results for VC Former General Motors Corporation Allison Gas Turbine Division, Plant 10 Indianapolis, Indiana IDEM VRP #6991004 KERAMIDA Project No. 2829E	ensqorqoroldeid-E,1-si	65.0	0.50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<1.0	<1.0	<1.0	NA	NA.
vater Analytical Resul General Motors Corp 3as Turbine Division, Indianapolis, Indiana IDEM VRP #6991004 AMIDA Project No. 2	ənəqorqoroldəld-1,	<5.0	<5.0	<5.0	<5.0	65.0	0.5>	65.0	0.50	65.0	<5.0	<5.0	<1.0	0.1>	<1.0	0.850	28.6
Former Ge Allison Gas Inc ID KERAN	2,2-Dichloropropane	65.0	65.0	<5.0	€5.0	<5.0	65.0	65.0	0.50	0.50	<5.0	<5.0	0.1>	0.1>	0.1>	NA	NA
Seoprobe (J-S-Dichloropropane	<5.0	<5.0	<5.0	<5.0	<5.0	0.5	<5.0	<5.0	<5.0	<5.0	<5.0	<1.0	<1.0	<1.0	NA	YZ.
	onnqorqoroldoid-2,	65.0	65.0	65.0	65.0	65.0	€5.0	65.0	65.0	65.0	<5.0	<5.0	<1.0	<1.0	0.1>	NA	N.
	rans-1,2-Dichloroethene	Г			65.0			<5.0		un un			<1.0	0.1>	<1.0	128(1)	2.040(2)
	Lab Sample No.	270502	270503	270752	270753	270754	270755	271017	271018	271020	271019	271397	326931	874746	874747		
	Sample Depth	20-24	31-35	30-34	26-30	18-22	26-30	32-36	32-36	20-24	32-36	28-32	20-24	12-17	18-22	dwater (1)	roundwater (1)
	Date Samuled	000076112	7/12/2000	7/13/2000	7/13/2000	7/14/2000	7/14/2000	7/17/2000	7/18/2000	7/18/2000	7/18/2000	7/24/2000	8/27/2002	8/29/2003	8/29/2003	esidential Cleanup Goals - Groundwater	on-Residential Cleanup Goals - Groundwater
	No.	W0C-	-20W	-21W	-22W	W150-	-23W	-24W	-25W	M92-8	3-26W	8-27W	3-39W	3-48W	3-49W	sidential Cle	n-Recidentia

VOCs = Volatile Organi Samples analyzed using EPA SW-846 Method 8260 Samples analyzed using EPA SW-846 Method 8260

Indiana Department of Environmental Management Voluntary Remediation Program Resource Guide, Appendix F Tier II Clearup Goals-Human Health Evaluation by Office of Environmental Response, July 1996.

Table 8a - Geoprobe Groundwater - VOCs Page 9 of 1/

	<5.0	<5.0	<5.0	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	0.0		9	
p-Isopropyltoluene		<1.0	<1.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<1.0		445	10,200(2)
Jeopropylenzene	<1.0	<1.0	<1.0	<5.0	65.0	65.0	65.0	<5.0	65.0	<5.0	<5.0	<5.0	<5.0	<5.0	<1.0		-689	10,200(2)
lodomethane	<5.0	<5.0	0.6>	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10,	<10.	<5.0		NA	NA
Hexachlorobutadiene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	65.0	<5.0	65.0	0.5>		10	36.7
9Hexanone	<12.5	<12.5	<12.5	<50.	<50.	<50.	<50.	<50.	<50.	<50.	<50.	<50.	<50.	<50.	<12.5		V.V.	NA
Ethyl methacrylate	65.0	<5.0	65.0	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<5.0		Y.	NA
Ethylbenzene	0.1>	0.1>	<1.0	0.5>	<5.0	<5.0	<5.0	<5.0	0.5>	6.50	<5.0	<5.0	<5.0	<5.0	<1.0		200	10,220
Ethyl Acetate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA
snaqorqoroldsiU-E,I-snari	<1.0	<1.0	<1.0	0.65	65.0	<5.0	0.65	<5.0	<5.0	<5.0	65.0	65.0	6.6	6.6	0.1>		NA	NA
es-1,3-Dichloropropene	<1.0	<1.0	<1.0	<5.0	<5.0	<5.0	0.5>	0.5>	0.5>	65.0	<5.0	<5.0	65.0	65.0	<1.0		NA	NA
onsqorqoroldslid-1,1	<1.0	<1.0	<1.0	<5.0	<5.0	<5.0	<5.0	<5.0	65.0	<5.0	65.0	<5.0	<5.0	65.0	<1.0		0.850	28.6
2,2-Dichloropropane	<1.0	<1.0	<1.0	<5.0	<5.0	<5.0	65.0	<5.0	0.5>	<5.0	65.0	6.0	0.65	0.6>	<1.0		NA	NA
J.3-Dichloropropane	<1.0	<1.0	<1.0	<5.0	<5.0	<5.0	<5.0	65.0	65.0	<5.0	<5.0	<5.0	650	<5.0	0.1>	The state of	NA	NA
1,2-Dichloropropane	<1.0	<1.0	<1.0	6.50	6.0	65.0	65.0	<5.0	6.0	65.0	65.0	65.0	65.0	65.0	<1.0		NA	NA
sna-1,2-Dichloroethene		30.8	31.3							65.0		0	0	65.0	0	The same	128(2)	2,040 ⁽²⁾
Lab Sample No.	874748	874744	874745	291969	291970	293162	293167	293320	293322	260553	260555	260557	260559	260561	874749			
Sample Depth	20-24	15-20	15-20	13-17	13-17	13-18	13-18	14-19	14-19	NA	NA	NA	NA	NA			dwater (1)	roundwater (1)
Parte Samuled	8/29/2003	8/29/2003	8/29/2003	5/1/2001	5/1/2001	5/16/2001	5/16/2001	5/18/2001	5/18/2001	3/2/2000	3/2/2000	3/2/2000	3/2/2000	3/2/2000	8/29/2003		anup Goals - Groun	I Cleanup Goals - G
Sample No.	KB-50W	KB-51W	KB-51W Dup	KB-i2W	KB-i12W	KB-i14W	KB-i15W	KB-i17W	KB-it7 Dup.	STA-GW	STB-GW	STC-GW	STD-GW	STE-GW	TRIP		Tier II Residential Cleanup Goals - Groundwater (1)	Tier II Non-Residential Cleanup Goals - Groundwater (1)

Methylene chloride

Table 8a Geoprobe Groundwater Analytical Results for VOCs (ug/L) Former General Motors Corporation Allison Gas Turbine Division, Plant 10

Indianapolis, Indiana IDEM VRP #6991004 KERAMIDA Project No. 2829E

VOCs = Volatile Organi Samples analyzed using EPA SW-846 Method 8260 Samples analyzed using EPA SW-846 Method 8260

Indiana Department of Environmental Management Voluntary Remediation Program Resource Guide, Appendix F Tier II Cleasup Goals-Human Health Evaluation by Office of Environmental Response, July 1996.

2) Calculated using surrogate toxicity values and Tier II equations

Table 8a - Geoprobe Groundwater - VOCs Page 10 of 15

	9nsthoroldoirT-2,1,1	<5.0	<5.0	<5.0	<5.0	<5.0	65.0	<5.0	<5.0	5	5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	5	<5	<5.0	<5.0	<5.0	4		200
	onarhorochoirT-I,I,	<5.0	<5.0	<5.0				65.0			9			<5.0		<5.0		0	<5			<5.0	<5.0	000	7007	
	anaznadoroldairT-4,2,1	NA	<5.0	65.0	<5.0	65.0	<5.0	<5.0	<5.0	5	5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5	5	<5.0	<5.0	<5.0	02	0/	
	eneznedoroldoirT-£,2,	NA	65.0		65.0		6.0		<5.0	9	9	6.0				6.0	65.0	<5.0	9	9	65.0	<5.0	<5.0	MA	INA	
Table 8a Geoprobe Groundwater Analytical Results for VOCs (ug/L) Former General Motors Corporation Alison Gas Turbine Division, Plant 10 Indianapolis, Indiana IDEM VRP #6991004 KERAMIDA Project No. 2829E	Loluene	0.50	<5.0	<5.0	<5.0	0.5>	<5.0	<5.0	<5.0	\$	0	0.50	<5.0	<5.0	0.50	<5.0	<5.0	<5.0	9	\$	<5.0	<5.0	<5.0	000	1,000	
	letrahydrofuran		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	MA	MA	
	[etrachloroethene		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	\$	S	<5.0	<5.0	<5.0	<5.0	65.0	<5.0	<5.0	9	O.	<5.0	<5.0	<5.0		0	
	onarisonoldsanoT-Z,Z,I,	65.0	65.0	65.0	<5.0	65.0	65.0	65.0	65.0	0	9	<5.0	<5.0	65.0	65.0	6.0	65.0	65.0	5	S	<5.0	65.0	<5.0			
	onadiooroldoantoT-2,1,1,	NA	65.0	0.6>	65.0	65.0	65.0	65.0	<5.0	5	5	<5.0	65.0	<5.0	<5.0	<5.0	<5.0	<5.0	5	5	<5.0	<5.0	<5.0		-	
	pplicue	65.0	<5.0	65.0	0.5>	(20)	65.0	<5.0	65.0	9	9	65.0	65.0	65.0	65.0	65.0	65.0	0.5>	\$	S	65.0	<5.0	65.0	VIA.	INV	
	-Propylbenzene	NA I	<5.0	<5.0	65.0	<5.0	<5.0	<5.0	<5.0	\$	Ö	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	Ş	'O	65.0	65.0	<5.0	(2)57	-	
	уаруграјене	NA	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	S	S	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	65.0	\$	S	<5.0	<5.0	<5.0	1 216	1,210	
	MIBK) -Methyl-2-pentanone		<50.	<50.	<50.	<50.	<50.	<50.	<50.	<10	<10	<50.	<50.	<50.	<50.	<50.	<50.	<50.	<10	<10	<50.	<50.	<50.	002	02541	-
	MLBE) Netphj-tett-pnthj etpet		<10.	<10.	<10.	<10.	<10.	<10.	<10.	5	\$	<10.	<10.	<10.	<10.	<10.	<10.	<10.	\$	5	<10.	<10.	<10.	15	40	
	МЕК) Мециај-ециај-кетопе	<20	<50.	<50.	<50.	<50.	<50.	<50.	<50.	<10	<10	<50.	<50.	<50.	<50.	<50.	<50.	<50.	<10	<10	<50.	<50.	<50.	012.20	211.12	
	Lab Sample No.	W5090064-05	260548	260549	260550	261735	261736	261737	263438	50526177	50526185	263430	263431	263432	263433	263435	263436	263437	50548940	50548932	270499	270500	270501		The second	
	Sample Depth	7	10-15	16-20	19-23	32-36	32-36	22.5-26.5	33-36	31-35	35-40	22-25	21-24	17-20	14-17	15-18	61-91	16-19	29-34	24.5-29.5	44-48	20-24	44-48	0	dwaler	
	Date Samuled	9/6/1995	3/1/2000	3/1/2000	3/1/2000	3/3/2000	3/6/2000	3/3/2000	4/6/2000	4/14/2000	4/14/2000	4/5/2000	4/5/2000	4/5/2000	4/6/2000	4/6/2000	4/6/2000	4/6/2000	5/3/2000	5/3/2000	7/11/2000	7/11/2000	7/11/2000		anup Goars - Groun	
	Sammle No.	HP-1	KB-1W	KB-2W	KB-3W	KB-4W	KB-5W	KB-6W	KB.7W	KB-8W	KB-9W	KB-10W	KB-11W	KB-12W	KB-13W	KB-14W	KB-15W	KB-15W Dup.	KB-16W	KB-17W	KB-18W	KB-19W	KB-19W	ier II Residential Cleanup Goals - Groundwater (1)	TH Kesidenhai Cie	

Detected compound is below the WRP Ther II Residential Cremp Goal
VOCs = Volatile Organi Samples analyzed using EPA SW-846 Method 8260
Samples analyzed using EPA SW-846 Method 8260
pg/L = micrograms per liter
NA = Not Applicable

Indiana Department of Environmental Management Voluntary Remediation Program Resource Guide, Appendix F Tier II Cleanup Goals-Human Health Evaluation by Office of Environmental Response, July 1996.

²⁾ Calculated using surrogate toxicity values and Ther II equations.

Table &a - Geoprobe Groundwater - VOCy Page 11 of 7

	anadbovoldairT-2,1,1	65.0	<5.0	<5.0	65.0	€5.0	<5.0	€5.0	<5.0	65.0	<5.0	<5.0	<1.0	<1.0	<1.0	5	50.2
	3.1,1,1-Trichloroethane	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<1.0	<1.0	0.1>	200	861.6
	anaznadoroldahT-4,2,1	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	10	1,022
	ensznadoroldairT-E,Z,I	65.0	<5.0	<5.0	<5.0	<5.0	65.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA	NA
	Toluene		<5.0									6.6			<1.0	1,000	20,440
	Tetrahydrofuran		NA	NA	NA	NA.	NA AN	NA	NA	NA	NA	NA	NA AZ	NA	NA	NA	NA
	Тейтасиютоейневе	<5.0	6.0	<5.0	65.0	20	65.0	6.0	6.0	6.0	<5.0	<5.0	<1.0	<1.0	0.1>	S	56.1
	1,1,2,2-Tetrachloroethane									<5.0		6.6		0.1>	<1.0	5	14.3
	onarhaoroldzarteT-2,1,1,1	<5.0	<5.0		<5.0							65.0			<1.0	5	110
104 1, 2829E	Зіўтепе		<5.0		<5.0					65.0	65.0	0.5			<1.0	NA	NA
IDEM VRP #6991004 KERAMIDA Project No. 2829E	n-Propylbenzene	65.0	65.0	<5.0	65.0	<5.0	65.0	<5.0	<5.0	<5.0	<5.0	<5.0	<1.0	<1.0	0.1>	64[2]	1,020(2)
IDEM ERAMIDA	эпэіватидв	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	0.50	<5.0	<5.0	<5.0	<5.0	1,216	4,088
4	(MIBK) 4-Methyl-2-pentanone		<50.	<50.	<50.	<50.	<50.	<50.	<50.	<50.	-50.	<50.	<12.5	<12.5	<12.5	1,520	5,110
	WLBE) Methyl-tert-butyl ether		<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	65.0	0.50	<5.0	45	715
	MEK) Methyl-ethyl-ketone	<50.	.50.	<50.	S0.	<50.	-50.	-50°.	<50.	<50°.	-50°.	c50.	<12.5	<12.5	<12.5	917.72	5,110
	Lab Sample No.	2			270753	T		271017		Г					874747		
	Sample Depth (feet)	20-24	31-35	30-34	26-30	18-22	26-30	32-36	32-36	20-24	32-36	28-32	20-24	12-17	18-22	lwater (1)	roundwater (1)
	Date Sampled	7/12/2000	7/12/2000	7/13/2000	7/13/2000	7/14/2000	7/14/2000	7/17/2000	7/18/2000	7/18/2000	7/18/2000	7/24/2000	8/27/2002	8/29/2003	8/29/2003	II Residential Cleanup Goals - Groundwater	II Non-Residential Cleanup Goals - Groundwater (1
	samule No.	KB-20W	KB-20W	KB-21W	KB-22W	KB-23W	KB-23W	KB-24W	KB-25W	KB-26W	KB-26W	KB-27W	KB-39W	KB-48W	KB-49W	I Residential Clea	I Non-Residentia

Table 8a
Geoprobe Groundwater Analytical Results for VOCs (ug/L)
Former General Motors Corporation
Allison Gas Turbine Division, Plant 10

VOCs = Volatile Organi Samples analyzed using EPA SW-846 Method 8260 Samples analyzed using EPA SW-846 Method 8260 pgT = micrograms per filter

¹⁰ Indiana Department of Environmental Management Voluntary Remediation Program Resource Guide, Appendix F Tier II Cleanup Goals-Human Health

(2) Calculated using surrogate toxicity values and Tier II equations Evaluation by Office of Environmental Response, July 1996.

Table 8a - Geoprobe Groundwater - VOC

1															П	T	П	
	enarizeotolioivT-2,1,1	0.1>	<1.0	<1.0	6.0	65.0	<5.0	<5.0	<5.0	65.0	65.0	<5.0	65.0	<5.0	6.0	<1.0	5	50.2
	onschooroldoirT-I,I,I	<1.0	<1.0	<1.0	<5.0	<5.0	<5.0	<5.0	<5.0	6.0	<5.0	<5.0	<5.0	<5.0	<5.0	<1.0	200	861'6
	susznadoroldzirT-4,2,1	<5.0	5.0	5.0	<5.0	<5.0	5.0	5.0	5.0	<5.0	<5.0	<5.0	<5.0	5.0	65.0	6.0	70	1,022
	9n9xn9doroldoirT-E,Q,I	<5.0											<5.0			<5.0	NA	NA
	Toluene	<1.0	<1.0							<5.0			<5.0		<5.0	<1.0	1,000	20,440
	Tetrahydrofuran	NA	NA										NA	NA	NA	NA	NA	NA
	Tetrachloroethene	<1.0	<1.0	<1.0	65.0	65.0	6.0	65.0	65.0	65.0	<5.0	65.0	6.0	65.0	<5.0	<1.0	25	56.1
	J.S.2.Tetrachloroethane	0.1>	<1.0	<1.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	65.0	<5.0	<1.0	5	14.3
OCs (ug/L)	onadiocochiasitaT-2,1,1,1	<1.0	<1.0	<1.0	<5.0	<5.0	65.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<1.0	5	110
Table 8a Groundwater Analytical Results for VV Former General Motors Corporation Allison Gas Turbine Division, Plant 10 Indianapolis, Indiana IDEM VRP #6991004 KERAMIDA Project No. 2829E	Styrene	<1.0	<1.0	<1.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	0.5>	<5.0	<5.0	<1.0	NA	NA
Table 8a Groundwater Analytical Results for V Former General Motors Corporation Allison Gas Turbine Division, Plant 10 Indianapolis, Indiana IDEM VRP #6991004 KERAMIDA Project No. 2829E	n-Propylbenzene	0.1>	0.1>	0.1>	65.0	65.0	65.0	65.0	65.0	<5.0	<5.0	0.5>	<5.0	<5.0	65.0	<1.0	64[2]	1,020
undwater A mer Gener son Gas Tu Indian IDEM	Ларhthalene	0.50	<5.0	0.50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	1,216	4.088
Table 8a Geoprobe Groundwater Analytical Results for VOCs (ug/L.) Former General Motors Corporation Allison Gas Turbine Division, Plant 10 Indianapolis, Indiana IDEM VRP #6991004 KERAMIDA Project No. 2829E	MIBK) f-Methyl-2-pentanone		<12.5	<12.5	<50°	<50.	<50.	<50.	-20.	<50.	<50.	<50.	<50.	<50.	<50.	<12.5	1,520	5,110
99	MERNYI-tert-butyl ether		050	<5.0	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<5.0	45	715
	МЕК) Мейруј-ейлуј-кетопе		<12.5	<12.5	<50.	<50.	-50.	-S0.	-50.	<50,	-50°.	-50.	99	-50.	-50.	<12.5	917.72	5.110
	Lab Sample No.	00			L	T	Т	T	Г	293322	Г	260555	260557	260559	260561	874749		
	Sample Depth	20-24	15.20	15-20	13-17	13-17	13-18	13-18	14-19	14-19	NA	AN	NA	AN	AN		dwater (1)	roundwater (1)
	Dare Samuled	8/29/2003	8730/2003	8/29/2003	5/1/2001	5/1/2001	1002/91/5	1002/91/5	5/18/2001	5/18/2001	3/2/2000	3/2/2000	3/2/2000	3/2/2000	3/2/2000	8/29/2003	II Residential Cleanup Goals - Groundwater	II Non-Residential Cleanup Goals - Groundwater
	Commish No	KB-S0W	VB SIW	R.S.IW Dur	KB.:2W	KRAISW	KRAIAW	KRAISW	KR-i17W	KB-i17 Dup.	STA-GW	STB-GW	STC-GW	STD-GW	STE-GW	TRIP	II Residential Clea	II Non-Residentia

VOCs = Volatile Organi Samples analyzed using EPA SW-846 Method 8260 Samples analyzed using EPA SW-846 Method 8260

Program Resource Guide, Appendix F Tier II Cleanup Goals-Human Health Indiana Department of Environmental Management Voluntary Remediation

Table 8a - Geoprobe Groundwater - VOCs Page 13 of 15

Xylenes, (Total)	<5.0	<5.0	<5.0	<5.0	0.5>	0.5>	<5.0	<5.0	9	5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	5	5	<5.0	<5.0	<5.0	10,000	001
Vinyl chloride	200	6.0	65.0	65.0	140	13	65.0	65.0	640	16	0.6>	65.0	<5.0	65.0	0.5>	65.0	0.6>	160	38	<2.0	<2.0	<2.0	2	
Vinyl acetate	<20	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10	<10	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10	<10	<10.	<10.	<10.	NA	
ansxnadlydiamirT-2,E,1	NA	<5.0	<5.0	<5.0	65.0	65.0	65.0	<5.0	5	\$	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	9	5	<5.0	<5.0	65.0	13.7(2)	
ənəznədiydəmirT-4,2,1	NA	<5.0	<5.0	0.5>	650	0.50	<5.0	<5.0	\$	5	<5.0	<5.0	<5.0	<5.0	0.5>	0.5>	65.0	\$	9	<5.0	<5.0	<5.0	13.7(2)	
3.2,3-Trichloropropane	NA	<5.0	<5.0	<5.0	<5.0	650	<5.0	0.50	9	9	<5.0	65.0	<5.0	<5.0	<5.0	65.0	<5.0	9	5	<5.0	6.0	<5.0	NA	
Trichlorofluoromethane	NA			6.0			-	65.0			65.0	65.0								65.0		65.0	1,380 ⁽²⁾	
Trichloroethene	430	1,300	86	9'9				<5.0		9	6.0			6.0		100	190			<5.0		<5.0	2	
Lab Sample No.	W5090064-05	260548	260549	260550		Г		Г					263432		263435	263436	263437	0	50548932	270499	Г	270501		
Sample Depth (feet)	7	10-15	16-20	19-23	32-36	32-36	22.5-26.5	33-36	31-35	35-40	22-25	21-24	17-20	14-17	15-18	16-19	16-19	29-34	24.5-29.5	44-48	20-24	44-48	dwater (1)	
Date Sampled	9/6/1995	3/1/2000	3/1/2000	3/1/2000	3/3/2000	3/6/2000	3/3/2000	4/6/2000	4/14/2000	4/14/2000	4/5/2000	4/5/2000	4/5/2000	4/6/2000	4/6/2000	4/6/2000	4/6/2000	5/3/2000	5/3/2000	7/11/2000	7/11/2000	7/11/2000	Fier II Residential Cleanup Goals - Groundwater	
Sample No.	HP-1	KB-1W	KB-2W	KB-3W	KB-4W	KB-5W	KB-6W	KB-7W	KB-8W	KB-9W	KB-10W	KB-11W	KB-12W	KB-13W	KB-14W	KB-15W	KB-15W Dup.	KB-16W	KB-17W	KB-18W	KB-19W	KB-19W	er II Residential Cle	

Table 8a Geoprobe Groundwater Analytical Results for VOCs (ug/L) Former General Motors Corporation Allison Gas Turbine Division, Plant 10

Indianapolis, Indiana IDEM VRP #6991004 KERAMIDA Project No. 2829E

VOCs = Volatile Organi Samples analyzed using EPA SW-846 Method 826 Samples analyzed using EPA SW-846 Method 8260 µg/L = micrograms per liter NA = Not Applicable

⁽¹⁰⁾ Indiana Department of Environmental Management Voluntary Remediation Program Resource Guide, Appendix F Trer II Cleanup Goals-Human Health Evaluation by Office of Environmental Response, July 1996.
⁽²⁾ Calculated using surrogate toxicity values and Tier II equations.

Table &a - Geoprobe Groundwater - VOCs Page 14 of 17

			-	
			-	
	36266	WO WO WILL	-	
ALL POST AND	Designed No.	rrojectivo.	-	
The second	PDAMITA	THE WATER DAY	-	
	H	4	1	

Table 8a
Geoprobe Groundwater Analytical Results for VOCs (ug/L)
Former General Motors Corporation
Allison Gas Turbine Division, Plant 10
Indianapolis, Indiana
IDEM VRP #6991004

Xylenes, (Total)	<5.0	<5.0	<5.0	<5.0	<5.0	65.0	6.0	<5.0	<5.0	<5.0	<5.0	<1.0	<1.0	<1.0	10,000	204,400
Vinyl chloride	18	97	310	<2.0	11	2.0	29	3	20	53	<2.0	0.1>	0.1>	0.1>	2	10
Vinyl acetate	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<5.0	<5.0	<5.0	NA	NA
onoxnodlydomirT-2,£,1	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	65.0	<1.0	<1.0	<1.0	13.7(2)	5,110 ⁽²⁾
eneznedlythemirT-4,2,1	<5.0	<5.0	65.0	65.0	6.0	65.0	<5.0	<5.0	<5.0	<5.0	<5.0	<1.0	<1.0	<1.0	13.7(2)	5,110(2)
3.2,3-Trichloropropane	<5.0	<5.0	<5.0	<5.0	6.0	6.0	6.0	65.0	65.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA	NA
ТгісһІогоПиотописһапе	<5.0	6.0	6.0	6.0	6.0	65.0	65.0	65.0	6.0	<5.0	<5.0	0.1>	0.1>	<1.0	1,380 ⁽²⁾	30,700(2)
Trichloroethene	<5.0	<5.0	<5.0	<5.0	7.2	6.0	<5.0	<5.0.	<5.0	<5.0	65.0	<1.0	<1.0	<1.0	5	260
Lab Sample No.	270502	270503	270752	270753	270754	270755	271017	271018	271020	271019	271397	326931	874746	874747		
Sample Depth (feet)	20-24	31-35	30-34	26-30	18-22	26-30	32-36	32-36	20-24	32-36	28-32	20-24	12-17	18-22	dwater (1)	roundwater
Date Sampled	7/12/2000	7/12/2000	7/13/2000	7/13/2000	7/14/2000	7/14/2000	7/17/2000	7/18/2000	7/18/2000	7/18/2000	7/24/2000	8/27/2002	8/29/2003	8/29/2003	er II Residential Cleanup Goals - Groundwater (1)	er II Non-Residential Cleanup Goals - Groundwater
Sample No.	KB-20W	KB-20W	KB-21W	KB-22W	KB-23W	KB-23W	KB-24W	KB-25W	KB-26W	KB-26W	KB-27W	KB-39W	KB-48W	KB-49W	er II Residential Cle	er II Non-Residentia

VOCs = Volatile Organi Samples analyzed using EPA SW-846 Method 82 Samples analyzed using EPA SW-846 Methol 8260

ug/L = micrograms per liter

NA = Not Applicable

⁽¹⁾ Indiana Department of Environmental Management Voluniary Remediation Program Resource Guide, Appendix F Tree II Cleanup Goals-Human Health Evaluation by Office of Environmental Response, July 1996.
⁽²⁾ Calculated using surrogate toxicity values and Ther II equations.

Reference 36

	in
- 8	1
Groundwater	Page]
a - Geoprobe	
Table 8	

Xylenes, (Total)	<1.0	<1.0	<1.0	<5.0	<5.0	<5.0	<5.0	65.0	65.0	0.5	<5.0	65.0	65.0	<5.0	<1.0	10,000	204 400
Vinyl chloride	<1.0		4.5	<2.0	<2.0	0.2>	<2.0	<2.0	<2.0	<5.0	<5.0	<5.0	<5.0	<5.0	<1.0	2	101
Vinyl acetate	0.5>	<5.0	0.5>	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<5.0	NA	NA
ansznadłydiaminT-&&u	<1.0	<1.0	<1.0	<5.0	<5.0	<5.0	<5.0	0.5>	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<1.0	13.7(3)	5 110(2)
ənəznədlythəmirT-Þ,2,1	<1.0	<1.0	<1.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	6.0	<5.0	<1.0	13.7(2)	511000
J.2,3-Trichloropropane	<5.0	<5.0	<5.0			0.6>	65.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA	NA
Trichlorofluoromethane	<1.0	<1.0	<1.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<1.0	1,380 ⁽²⁾	20.700[2]
Trichloroethene	<1.0	389	371	65.0	65.0	65.0	44	150	170	<5.0	65.0	<5.0	6.0	61	<1.0	5	070
Lab Sample No.	874748	874744	874745	291969	291970	293162	293167	293320	293322	260553	260555	260557	260559	260561	874749		
Sample Depth (feet)	20-24	15-20	15-20	13-17	13-17	13-18	13-18	14-19	14-19	NA	NA	NA	NA	NA		Iwater (1)	(1)
Date Sampled	8/29/2003	8/29/2003	8/29/2003	5/1/2001	5/1/2001	5/16/2001	5/16/2001	5/18/2001	5/18/2001	3/2/2000	3/2/2000	3/2/2000	3/2/2000	3/2/2000	8/29/2003	ier II Residential Cleanup Goals - Groundwater U	
Sample No.	KB-50W	KB-51W	KB-51W Dup	KB-i2W	KB-i12W	KB-i14W	KB-i15W	KB-i17W	KB-i17 Dup.	STA-GW	STB-GW	STC-GW	STD-GW	STE-GW	TRIP	II Residential Cle	1 0 14 14

Table 8a
Geoprobe Groundwater Analytical Results for VOCs (ug/L)
Former General Motors Corporation
Allison Gas Turbine Division, Plant 10
Indiamapolis, Indiana
IDEM VRP #6991004
KERAMIDA Project No. 2829E

Detected compound is below the VRP Tier II Residential Cleanup Goal
VOCs = Volatile Organi Samples analyzed using EPASW-846 Method 826

µg/L = micrograms per liter

NA = Not Applicable

(1) Indiana Department of Environmental Management Voluntary Remediation Program Resource Guide. Appendix F Trer II Cleanup Goals-Human Health

(2) Calculated using surrogate toxicity values and Tier II equations.

Table 8b - Geoprobe Groundwater - PAHy Page 1 of

3,066 912

Phenanthrene	<1.00	<1.00	<1.00	<1.00	<1.00	4.9>	<6.4	<6.4	<6.4	<6.4	<6.4	230(3)	230(5)	
Naphthalene	<2.00	<2.00	<2.00	<2.00	<2.00	0.8>	0.8>	0.8>	0.8>	0.8>	<8.0	1,216	4,088	
Indeno (1,2,3-ed)	0.36	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.40	10	
Fluorene	<1.00	<1.00	<1.00	<1.00				2.1	2.1	<2.1	2.1	1,216	4,088	
Fluoranthene	1.14 <1	<0.20	<0.20					42.1			2.1	243.2	817.6	
Dibenzo (a,h) anthracene	0.39	<0.20	<0.20	<0.20		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.30	10	
Сргузепе	19.0	<0.20	<0.20	<0.20				<0.20	<0.20	<0.20	<0.20	0.20	391.8	
Benzo (k)		<0.20	<0.20					<0.17	<0.17	<0.17	<0.17	0.20	39.2	
Benzo (ghi) perylene	0.53	<0.20						<0.76		92.0>	92.0>	38.4(1)	613(2)	
Benzo (b)		<0.20	<0.20	<0.20		<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	0.20	10	
Benzo (a) pyrene	1.15	<0.20			<0.20				<0.20	<0.20	<0.20	0.20	01	
Вепго (а) анthrасепе	0.41	<0.20	<0.20					<0.10		<0.10	<0.10	0.10	10	
Аптагепе	<1.00							9.9>			9:9>	9,120	30,660	
Acenaphthylene	<1.00	<1.00	00:1>	<1.00	00:1>	01>	01>	01>	01>	01>	01>	(2)68-9	2,040(2)	
уссияррцисис	<1.00	<1.00	<1.00	<1.00	<1.00	<18	<18 <18	<18	×18	&I>	<18 <18	1.824	6.132	
Lab Sample No.	874746	874747	874748	874744	874745	291969	291970	293162	293167	293320	293322			
Sample Depth Lab Sample (feet) No.	12-17	18-22	20-24	15-20	15-20	13-17	13-17	13-18	13-18	14-19	14-19	undwater (0)	· Groundwater (1)	CHARLES
Date Samoled	8/29/2003	8/29/2003	8/29/2003	8/29/2003	8/29/2003	5/1/2001	5/1/2001	5/16/2001	5/16/2001	5/18/2001	5/18/2001	anup Goals - Gro	d Cleanup Goals	of Charles and the same
Sample No.	KB-48W	KB-49W	KB-50W	KR.51W	KB-51W Dup	KB-i2W	KB-i12W	KB-i14W	KB-i15W	KB-i17	KB-i17 Dup.	Tier II Residential Cleanup Goals - Groundwater (1)	Tier II Non-Residential Cleanup Goals - Groundwater (1)	THE TANK WASHINGTON

Table 8b
Geoprobe Groundwater Analytical Results for PAHs (ug/L)
Forner General Motors Corporation
Allison Gas Turbine Division, Plant 10
Indianapolis, Indiana
IDEM VRP #6991004
KERAMIDA Project No. 2829E

Pyrene

PAHs = Polynuclear Aromatic Hydrocarbons Samples analyzed using EPA SW-846 Method 8310

Indiana Department of Environmental Management Voluntary Remediation Program Resource Guide, Appendix F. Tier II Cleanup Goals-Human Health Evaluation by Office of Environmental Response, July 1996.

Technical Memo by Indiana Voluntary Remediation Program, dated 4/21/98

The given value is a residential cleanup goal (non-residential cleanup goal is not available). ⁽²⁾ Calculated using surrogate toxicity values and Tee II equations.
⁽³⁾ Tier I Health Protective Levels for Phenanthrene

Table 8c

Geoprobe Groundwater Analytical Results for Metals (ug/L)
Former General Motors Corporation
Allison Gas Turbine Division, Plant 10
Indianapolis, Indiana
IDEM VRP #6991004
KERAMIDA Project No. 2829E

Sample No.	Date Sampled	Sample Depth (feet)	Lab Sample No.	Total Cadmium	Total Chromium	Total Lead
KB-i2W	5/1/2001	13-17	291969	<5.	<40.	<5.
KB-i12W	5/1/2001	13-17	291970	<5.	<40.	<5.
KB-i14W	5/16/2001	13-18	293162	<5.	<40.	<5.
KB-i15W	5/16/2001	13-18	293167	<5.	<40.	9.
KB-i17	5/18/2001	14-19	293320	<5.	<40.	10.
KB-i17 Dup.	5/18/2001	14-19	293322	<5.	<40.	<5.
ier II Residential	Cleanup Goals - G	roundwater (1)		5.0	100	15 ⁽²⁾
Tier II Non-Reside	ential Cleanup Goa	ls - Groundwater)	51.1	511	15(2)

Detected compound exceeds the VRP Tier II Non-Residential Cleanup Goal

Detected compound exceeds the VRP Tier II Residential Cleanup Goal

Detected compound is below the VRP Tier II Residential Cleanup Goal

Samples analyzed using EPA Method Series 6000/7000

 $\mu g/L = micrograms per liter$

(1) Indiana Department of Environmental Management Voluntary Remediation Program Resource Guide, Appendix F Tier II Cleanup Goals-Human Health Evaluation by Office of Environmental Response, July 1996.

(2) IDEM VRP Interoffice Memo dated on January 26, 1998.

	Reference 36	Page 152
	NA NA NA NA NA NA NA NA NA NA NA NA NA N	Page 1 of 32
	NA NA NA NA NA NA NA NA NA NA NA NA NA N	
	N N N N N N N N N N	
	Chloroethane Chlo	
,	Chloroethane Ch	
	Chlorodibromomethane Chlorodischane	
	Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene	
	S S S S S S S S S S S S S S S S S S S	
	N N N N N N N N N N N N N N N N N N N	
	1.029 6 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
	N N N N N N N N N N N N N N N N N N N	127
	Part Part	
	Bromomethame Brom	
	M N N N N N N N N N N N N N N N N N N N	
	N N N N N N N N N N	
	N N N N N N N N N N N N N N N N N N N	今中的新疆
L	NA NA NA NA NA NA NA NA	11680
_	N N N N N N N N N N	
-	A N N N N N N N N N N N N N N N N N N N	
	Acrohem Acrohe	
	Acetone Ace	
	Lab Sample No.	
	S S	
	Date Sampled 3/3/2004 3/3/2004 3/3/2004 3/3/2004 3/3/2004 3/3/2004 3/3/2004 11/2/1994 11/2/1999 11/2/1999 11/2/2003 11/2/2003 11/2/2003 11/2/2003 11/2/2004 3/11/2004 6/4/2004	
	Nat	

Reference 36 SC OCT OF STATE O

No. 19. Propose Prop	l			-			-			-	-	-	-			-	-	-								l
No. No.	Semi				Lab Sample No.	ycetone	Acrolein	Acrylonitrile	genzene	эпэхпэдошолд	snantismeroldsomerB	annthamoroldalbomor8	mrolomor8	вготопейние	a-Butylbenzene	sec-garkipenzene	ert-Butylbenzene	Sarbon disulfide	Carbon tetrachloride	Chlorobensene	Chlorodibromemethane	Сріогоєграпе	Chloroform	Chloromethane	2-Chlorotoluene	+Chlorotoluene
No. No.	MW			0.20		L			NA											П			NA			X
Weight 40 10 10 10 10 10 10 10	MW			0.20		ZZ	NA	XX	NA										Y	NA.	NA	Y'N	NA			X
WYDOWNICH 400 WA WA 450	MW		-	0.20		<20	<50	<50											1.0	<1.0	<1.0	<10	<1.0			X
	MW				VS070191-14	<20	NA	NA.											5.0	<5.0	050	01>	0.50	01>	NA	XX
1,55,500, 1,500,	MW	-			V7020074-04	<20	YZ	NA										5.0	0.5	65.0	<50	01>	990	012		X
2000.001.001.001.001.001.001.001.001.001	MW			T	253802	<50	<250	<250	<50		T						Ť	5.0	0.5	900	<50	410	200	<10.		500
2,00,0,0,1 4,0,1	MEN		-	0.20	П	<50	<250	<250	<50		T						T	T	5.0	<5.0	<50	<10	<20			<5.0
1,2,000, 2,000 2,0	MW		-	0.20	Т	99	<250	<250	650	T	T								5.0	<5.0	920	<10.	<20			<5.0
Stroking Stroking	MW			0.20		<50	<250	<250	<5.0								Ť		5.0	6.65	65.0	<10.	<20			650
Suppostive Class	MW			10-20		<20.0	<50.0	<50.0	<1.0									İ	1.0	<1.0	<1.0	<5.0	<1.0			0.1>
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	MW			10-20	503002149	< 100	< 100	< 100	< 5.0		2								5.0	< 5.0	< 5.0	<5.0	< 5.0			< 5.0
National Color Nat	MW			5-27.5		<100	<200	<200	5		Ė						İ	İ	55	55	8	05>	8			X
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	MW				VS070191-10	<20	YZ	NA.	<5.0										5.0	<5.0	<5.0	01>	<5.0			S
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	MW	-			V7020074-05	<20	YZ	NA	0.5>										5.0	<5.0	<5.0	<10	<5.0	10	NA	NA
10,000,000,000,000,000,000,000,000,000,	MW	_	1.0	5.27.5		<50	<250	<250	<5.0										5.0	0.5>	<5.0	<10.	<20			\$5.0
5 20000253 450 420	W-1			5.27.5		<50	<250	<250	<5.0		3								5.0	<5.0	<5.0	<10.	<20		<5.0	0
5 2986421 <a #"="" href="to-stage</td><td>MW</td><td></td><td></td><td>5-27.5</td><td></td><td><50</td><td><250</td><td><250</td><td><5.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5.0</td><td><5.0</td><td>6.0</td><td><10.</td><td><20</td><td></td><td></td><td>00</td></tr><tr><td>5 3248418 <th</td><td>MW</td><td></td><td></td><td>5-27.5</td><td></td><td><50</td><td><250</td><td><250</td><td><5.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5.0</td><td>6.50</td><td><5.0</td><td><10.</td><td><20</td><td></td><td></td><td>50</td></tr><tr><td>5 3.2484 	MW			5-27.5		<50	<250	<250	<5.0		1								5.0	<5.0	<5.0	<10.	<20			50
5 509002443 CAD	M			5-27.5		<50	C250	<250	<5.0		1								5.0	<5.0	0.5	<10.	<20	1	6.0	200
W.W.D.D.D.T.L. Z.D. X.D.	S I			5.27.5		< 100	< 100	< 100	< 5.0										5.0	< 50	< 5.0	<5.0	< 5.0	1		S.
WY000191-11 20	MEN				69942	<20	<50	<50	<1.0			1.4							0.1	0.1>	<1.0	01>	0.1>			N
WYSTOTTON CAD WA	M				WS070191-11	<20	Y.Y	NA	<5.0		Ì								6.0	<5.0	<5.0	01>	0'5>		NA	N
2800323 450 4250				1	W7020074-06	<20	ZY	NA	0.50	1	Ť					1			5.0	<5.0	0.50	01>	<5.0			S
296419 CSO C				5-25	Т	000	4230	<250	0.00	Ť	Ť	T				T			0.0	0.0	0.0	SEO.	077	<10°		ol:
256038 \$4.00 \$2.50 \$4.50 \$5.00 \$5.				5-25		000	4250	<250	O'C>	Ī	T				I	T			0.0	0.65	0.0	×10.	075	×10.		0
Substitute Sub	N I			5-25		<50	250	<250	<5.0		Ť					T	Ť	Ī	0.0	0.0	0.0	<10.	075	<10.	0.0	000
SQB00246 \$100	S IS		-	575	Т	200	0000	0000	000	T	T				T	T	T	T	3.0	200	0.0	VIV.	0.40	SIU.	0.0	000
SOUTH SOUT	1			5.25		2000	2000	2000	OTY Y		T	T			T		T	T	5.0	VIV	0.15	750	250	000	0.50	200
State Stat	N. S. S.			12-63		2 100	2007	2001	V 2.0	T	T	T			T	T	T	T	5.0	000	2000	0.50	250	000	I	1
Separate Separate	New		-	5.05		100	0017	1001	057	T		T			T			T	0.5	057	0.50	050	250	T	ı	0 5 0
W8970191-08	M	-	-	0E-06		-20	050	<50	<10	T	T	T			T	T	T	T	10	<1.0	<1.0	012	012	T	I	ž
WY020074-07	M			T	V5070191-08	000	42	NA	050	T	T	T					T	T	0.5	0.50	<50	<10	050	012	NA	Z
255790 Care	New				70.27007074	200	12	NA.	080			T			T		Ī	T	4.0	030	250	017	040	710	NA	12
2566388 \$50 \$250 \$250 \$50	M			T	253790	057	4250	<250	250						T		T	T	0.5	057	999	210	220	<10°	0.50	45.0
286688 \$40 \$250 \$250 \$250 \$450 \$50 \$50 \$50 \$650 \$650 \$	M		-	05.00		05/	250	050	087		T	T					030	200	9.0	037	250	017	200	017	0.50	14
296409 <29 <250 <250 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50	MW			00-30	280685	<50	950	<250	<50		5.0	0 <50			65.0	65.0		5.0	5.0	<5.0	<5.0		<20	<10.	650	150
3,040 NA NA S NA NA 0259 ⁽²⁾ NA NA 64 ⁽²⁾ NA NA 64 ⁽²⁾ NA NA 1,020 ⁽²⁾ 1,020 ⁽²⁾ 1,020 ⁽²⁾ 1,020 ⁽²⁾ 1,020 ⁽²⁾ 1,020 ⁽²⁾ NA NA 2,040 ⁽²⁾ NA NA 468.9	MW			30-30	П	<50	<250	<250	<5.0								Ť		5.0	65.0	9.0	<10.	<20	<10.	6.0	<5.0
3,040 NA NA 5 NA NA 0.259° NA NA 641° NA NA 1,020° 1,000° 10,200° 10,200° NA 112° NA 23,161 100																				1000						
10,220 NA NA 98.6 NA NA 46,1 ¹⁰ NA NA 1,020 ¹⁰ 1,020 ¹⁰ 1,020 ¹⁰ 1,020 ¹⁰ NA 2,040 ¹⁰ NA 468.9 NA 468.9	Res	dential Cleanup Goal	Is - Groundwater	11.3		3,040	Y.	NA	5	NA		289(4)	NA	NA	6444	6400	64	1,060	NA	11200	NA	23,161	100	ď.	NA	ZA
of communication by P. Per II. No. Residential Cleanary Cont.	Nor	Residential Cleanup	Goals - Groundy	water (1)		10,220	NA.	NA	986	NA	Н	16.100	NA	NA	1,020(2)			10,200/20	NA	2,040(2)	NA	V.	468.9	NA.	NA	Z
		spound exceeds the VR	P Tier II Non-Res	sidential Cleams	up Goal																					
CATOCOCCUS CANONICAL SECURITION OF SECURITIO	CARROCACE CO	SCHOOL SECTION AND AND AND AND	AP 1827 II NOWINGING																							

		Reference 36 Page 154
	4-Chlorotoluene	Color Colo
	2-Chlorotoluene	NA Meli Group
	Chloromethane	
	Chloroform	10.
	Chloroethune	(\$10.00) (\$2.0
	snadtsmomordiborold.)	\$
	Chlorobenzene	2010 1 1 1 2 m 1 1 2 m 1
	Carbon tetrachloride	
-	Carbon disulfide	200
-	tert-Butylbenzene	200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	sec-Butylbenzene	200
	n-Butylbenzene	3
12	Bromomethane	
ct No. 2829		\$\frac{5\cdot 0}{5\cdot 0}\$
KERAMIDA Project No. 2829E	шырошогд	\$\frac{10}{250}\$ \$\frac
KEKAB	Bromodichloromethane	C C C C C C C C C C
	Bromochloromethane	
-	Bromobenzene	99992395¥XX9999999999985XXXXXXXXXXXXXXXXXXXXXX
	Benzene	S
	Acrylonitrile	NA NA NA NA NA NA NA NA NA NA NA NA NA N
L	Acrolein	C C C C C C C C C C
	Acetone	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
	2	8.89 19.12 19.16 10 10 10 10 10 10 10 10 10 10 10 10 10
	lav	2
	Screen In	20:30 20:30
	Date Sampled	3/1/20/2002 3/1/20/2003 8/20/2003 8/20/2003 3/11/2004 6/4/2004 6/4/2004 11/8/2000 11/8/200 11/8/200 11/8/200 11/8/200 11
	Sample No.	NW-147A 7/22/2002

ceds the VRP Ther II Note-Residential Charap Goal seeds the VRP Ther II Residential Charap Coal Make the VRP Ther II Residential Charap Coal	
VRP Ther II Note-Residential Cleaning VRP Ther II Residential Cleaning VRP Ther II Residential Cleaning	
VRP Ther II Note-Residential Cleaning VRP Ther II Residential Cleaning VRP Ther II Residential Cleaning	
VRP Ther II Note-Residential Cleaning VRP Ther II Residential Cleaning VRP Ther II Residential Cleaning	
VRP Ther II Note-Residential Cleaning VRP Ther II Residential Cleaning VRP Ther II Residential Cleaning	
VRP Ther II Note-Residential Cleaning VRP Ther II Residential Cleaning VRP Ther II Residential Cleaning	
VRP Ther II Note-Residential Cleaning VRP Ther II Residential Cleaning VRP Ther II Residential Cleaning	
VRP Ther II Note-Residential Cleaning VRP Ther II Residential Cleaning VRP Ther II Residential Cleaning	
VRP Ther II Note-Residential Cleaning VRP Ther II Residential Cleaning VRP Ther II Residential Cleaning	
ceeds the VRP Tier II Note-Residential Costs of the VRP Tier II Residential Clean Along the UR Sendential Clean	
seeds the VRP Ther II Not-Residential seeds the VRP Ther II Residential Cle-	
ceeds the VRP Ther II Note-Residen seeds the VRP Ther II Residential Color to VRP The VRP Ther II Residential Color to VRP Ther II Residential Color to VRP Ther II Residential Color to VRP Ther II Residential Color to VRP Ther II Residential Color to VRP Ther II Residential Color to VRP Ther II Residential Color to VRP Ther II Residential Color to VRP Ther II Residential Color to VRP Ther II Residential Color to VRP Ther II Residential Color to VRP Ther II Residential Color to VRP Ther II Residential Color to VRP Ther II Residential Color to VRP Ther II Residential Color to VRP Ther II Residential Color to VRP Ther II Residential Color to VRP Ther II Residential Color to VRP Ther II Residential Color to VRP Ther II R	
seeds the VRP Tier II Not-Rein seeds the VRP Tier II Residents the new VRP Tier II Residents	
seeds the VRP Ther II Note-Re seeds the VRP Ther II Resides the new VRP Ther II Resides	
seeds the VRP Ther II Not seeds the VRP Ther II Resident	
cects the VRP Tier II R.	
cerds the VRP Tier II	
ceeds the VRP Tic seeds the VRP Tic	
seeds the VRP	
eeds the VR	
seeds the seeds the	
production of	
9 18	
2 5 5	
0 1 1	
0 0 0	
8 2 3	
男 人 !	

Screen Interval (feet) 5-20 5-20 5-20 5-20 5-20 5-20 5-20 5-20	Lab Sample No. W5070191-03 W7020074-13 253809	S S S S	Acrolein	Acrylonitrile	Benzene	у У У № № №	S S S S S S S S S S S S S S S S S S S	S S S Bromodichloromethan	A	Bromomethane	U-Butyberzene	S S S S	S S S lert-Butylbenzene	Carbon disuifide	Carbon tetrachloride	(A) (A) (A) (A) (A) (A) (A) (A) (A) (A)	Chlorodibromentham	Chloroethane Chloroethane	S S S Chleroform		Chloromethane
	9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	250 250 250 250 250 30 30 30 30 30 30 30 30 30 30 30 30 30	250 250 250 250 0 < 100 NS NS	NS 62.0 65.0 NS 85.0 N	050 050 050 050 050 050 050 050 050 050	NS 5.0 NS 5.0 NS 5.0 NS 5.0 NS 5.0		0.5.0 0.5.0 NS <5.0 NS NS	C (2.0) (2.0) (2.5.0) NS NS	NS < < < < < > 0 0 0 0 0 0 0 0 0 0 0 0 0 0	050 CL0 SS 0 NS SS 0	N N C C C C C C C C C C C C C C C C C C	 5.0 5.0 41.0 NS NS 	NS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<5.0 <5.0 NS NS NS	0.5.0 0.5.0 NS NS	410. 45.0 NS NS	NS NS 0 20 20 NS NS NS NS NS NS NS NS NS NS NS NS NS	VVVZZ	<10. <5.0 <5.0 NS NS
	253801 260573 260573 280690 296401 324016		250 250 250 250 250 250 250 250	NA NA NA C250 C250 C250 C250 C250 C250 C250	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	SS NA NA NA SS 0 SS 0 SS 0 SS 0 SS 0 SS 0 SS 0 SS		450 450 450 410	\$100 \$100 \text{	NA NA S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AN N N N N N N N N N N N N N N N N N N	NA NA S S S S S S S S S S S S S S S S S	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200000000000000000000000000000000000000	\$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50	0.0000000000000000000000000000000000000	< 5.0 < 10 < 10 < 10 < 10 < 10 < > < < < < < < < < < < < < < < < < < < <	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	VVVVVVV	< 50 < 10 < 10, < 10, < 10, < 10, < 10, < 50, < 10, < 50, < 10, < ,<br < 10, < 10, < 10, < 10, < 10, < 10, < 10, < 10, < 10,
5.20 5.20 5.20 4.5.19.5 4.5.19.5 4.5.19.5 4.5.19.5 4.5.19.5	\$03002537 \$03237224 \$03237224 \$03492720 W\$070191-02 W7020074-14 W7020074-23 253796 260594	200 000 000 000 000 000 000 000 000 000	85	 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	99 99 99 99 99	0.5.0 NA NA NA NA C5.0 C5.0 C5.0	0.50 A N A A 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	050 050 NA NA 050 050 050 050 050 050 050 050 050 05	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	2552222222	000000000000000000000000000000000000000	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$\chi_{\chi\tinm\tinm\tinm\tinm\tinm\tinm\tinm\tin	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		\$50 \$50 \$10 \$10 \$10 \$10 \$10 \$10 \$10 \$10 \$10 \$1
4.5-19.5 4.5-19.5 4.5-19.5 4.5-19.5 4.5-19.5 4.5-19.5 4.5-19.5 4.5-19.5 4.5-19.5	296404 296405 324185 324185 842915 842916 872601 503002545 503002552	\$50 \$50 \$20,0 \$20,0 \$100 \$100	250 250 250 250 250 250 250 250 250 250	250 250 250 250 250 250 250 250 250 250	\$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50	650 610 650 650 650 650	50 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	\$20 \$20 \$10 \$10 \$20 \$20 \$20 \$20 \$20 \$20 \$20 \$20 \$20	\$50 \$50 \$10 \$10 \$50 \$50 \$50 \$50	45.0 65.0 65.0 65.0 65.0 65.0 65.0 65.0 6	\$50 \$10 \$10 \$50 \$50 \$50 \$50 \$50	0.0000000000000000000000000000000000000	\$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50	\$5.0 \$5.0 \$1.0 \$5.0 \$5.0 \$5.0 \$5.0 \$5.0 \$5.0 \$5.0 \$5	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$50 \$10 \$10 \$10 \$10 \$10 \$10 \$10 \$10 \$10 \$1	\$5.0 \$5.0 \$1.0 \$2.0 \$2.0 \$2.0 \$2.0 \$2.0 \$2.0 \$2.0 \$2	410. 410. 450. 450. 450. 450. 450. 450. 450. 45	(20 (20 (20 (1.0 (1.0 (1.0 (1.0 (5.0 (5.0		410. 410. 52.0 53.0 53.0 53.0 53.0 53.0 53.0 53.0
MW-153 3/11/2004 4.5-19.5 NW-153 5/11/2004 4.5-19.5 MW-153 6/4/2004 4.5-19.5 Ter II Residential Cleanty Godls - Groundwater ⁽¹⁾	503237182 503237190 503492670 503492696	< 100 < 100 < 100 < 100 3,040	C 100 C 1	× 100 × 100 × 100 × 100 N	\$ \$ \$ 0 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	C50 C50 C50 C50	<5.0 <5.0 <5.0 <5.0 NA	< 5.0 < 5.0 < 5.0 < 5.0 < 5.0	< 5.0 < 5.0 < 5.0 < 5.0 NA	C 5.0 C 5.0 C 5.0 C 5.0 C 5.0 NA	<550 <550 <550 <550 <550	< 5.0 < 5.0 < 5.0 < 5.0 < 5.0	<5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0 1,960 th	A	< 5.0 < 5.0 < 5.0 < 5.0 < 5.0	0.5.0 0.5.0 0.5.0 0.5.0 0.5.0 0.5.0	< 5.0 < 5.0 < 5.0 < 5.0 < 5.0	< 5.0 < 5.0 < 5.0 < 5.0 < 5.0		NA 550

4-Chlorotolnene	NA	NA	052	250	250	0.00	000	0.00	0.00	NA	NA	050	050	<50	250	<5.0	NA	NA	NA.	0.5>	<5.0	65.0	9.0	<1.0	0.00	0.60	< 5.0	NA	NA.	<5.0	9	920	9.0	< 5.0	< 5.0	< 5.0		NA	VV
2-Chlorotoluene	NA.	NA	030	050	200	000	0.00	0.00	0000	NA	NA	0.50	080	080	050	080	NA	NA.	NA.	0.5>	<5.0	<5.0	<5.0	VI.0	0.6 >	0.6 5	× 5.0	N.A.	NA	<50	950	<5.0	<5.0	< 5.0	< 5.0	< 5.0		NA	
Chloromethine	<10	<10	010	C10	710	CIU.	C10.	VIO.	0,60	100	71 000	21000	101	VIO.	010	VIO.	017	010	01>	<10.	<10.	<10.	<10.	<5.0	V 2.0	0000	25.0	>100	01>	<10	VIO	<10.	<10.	< 5.0	< 5.0	< 5.0		Y.	
molorold	<5.0	<5.0	200	200	200	077	072	072	000	200	200	200	200	000	900	200	200	9	950	0Z>	<20	<20	<20		× 5,0	4 2.0	25.0	080	<50	900	900	200	200	< 5.0	< 5.0	< 5.0		100	
Chloroethane	010	01>	917	017	710	VIO.	AIO.	<10°	000	000	000	210	710	710	710	VIO.	204	210	01>	<10.	<10.	<10.	<10.	<5.0	0.50	0.50	057	/100	9	100	100	<10.	<10.	< 5.0	< 5.0	< 5.0		23,161	
Съзого в протого по по по по по по по по по по по по по	6.0	050	080	080	25.0	0.0	0.00	0.55	0.65	0.00	200	200	25.0	200	0 90	200	200	080	900	65.0	650	<5.0	65.0	<1.0	< 5.0	0.00	0.00	03/	999	080	000	050	65.0	< 5.0	< 5.0	< 5.0		d Z	
Chlorobenzene	<5.0	0 50	200	200	0.02	0.0	0.55	65.0	0.50	23.0	000	0000	200	000	250	25.0	035	050	0.50	<5.0	<5.0	<5.0	<5.0	<1.0	< 5.0	000	C2.0	200	70	200	200	200	<5.0	< 5.0	< 5.0	< 5.0	The Person of the Person of	1120	
arbon tetrachloride	T		0.00	0.03	0.00			65.0	<5.0	63.0	000	200	0.00	0.0	0.50	0.0	000	040	080	0.0	65.0	65.0	6.0	<1.0	< 5.0	< 5.0	0.50	050	0.50	0 40	0.00	200	65.0	< 5.0	< 5.0	< 5.0	The state of the s	NA	
əbilineib nodus.	050	080	000	000	0.00	020	650	<5.0	< 5.0	0,0>	000	000	0.0	0.0	0.0	0.0	0.00	0.00	200	650	0.5	65.0	6.0	<1.0	< 5.0	< 5.0	0.65	000	24.0	24.0	200	200	950	082	650	0.50		1,060(15)	
ert-Butylbenrene	1 42	NA	NA.	0.0	0.0	0.0	0.0	03.0	<5.0	< 3.0	YZ.	NA	0.0	0.0	0.0	0.0	200	200	NA NA	0.60	65.0	0.50	0.50	0.1>	<5.0	<5.0	0000	NIA NIA	NA	25.0	200	200	920	05>	052	e 50	100	64(4)	
se-parkipsuzene	6 V2	NA	MA	0.0	000	650	0.00	65.0	< 5.0	C20	NA	NA	0.0	0.0	0.0	0.0	000	N.V.	200	040	0.50	6.60	0.5>	0.1>	< 5.0	<50	× 5.0	200	NA.	NA.	0.0	200	000	050	052	c50		64(2)	
-gnţλpeuxeue	2	NA.	200	0.0	0.0	<5.0	0.0	0.50	<5.0	< 5.0	<z.< td=""><td>VV</td><td>000</td><td>0.0</td><td>000</td><td>0.0</td><td>0.00</td><td>NA NA</td><td>NA</td><td>650</td><td><5.0</td><td><5.0</td><td><5.0</td><td><1.0</td><td>< 5.0</td><td>< 5.0</td><td>× 2.0</td><td>200</td><td>N.A.</td><td>NA.</td><td>000</td><td>200</td><td>200</td><td>05></td><td>057</td><td>- SO</td><td>100000</td><td>6400</td><td></td></z.<>	VV	000	0.0	000	0.0	0.00	NA NA	NA	650	<5.0	<5.0	<5.0	<1.0	< 5.0	< 5.0	× 2.0	200	N.A.	NA.	000	200	200	05>	057	- SO	100000	6400	
эпидэтотол	710 B	240	610	<10.	<10.	<10.	<10.	<10.	< 5.0	< 5.0	<100	<1,000	<10.	<10.	<10.	<10.	C10.	C10	SJU S	<10	<10.	<10.	<10.	0.50	< 5.0	< 5.0	< 5.0	2000	2007	CIO VIO	CIO.	VIO.	010	080	080	087		NA	
шлојошог	8	200	65.0	<5.0	<5.0	<5.0	<5.0	0.50 <5.0	<5.0	< 5.0	20	<500	0.50	200	<5.0	200	0.65	000	200	250	<50	<50	<50	<1.0	< 5.0	< 5.0	< 5.0	A 2.0	100	000	000	000	200	080	0 5 0	082	200	NA	
sundischloromethane	B	200	00	650	<5.0	<5.0	<5.0	<5.0	<5.0	< 5.0	05>	<500	970	0.0	0.0	200	0.05	000	000	200	052	<50	<5.0	2,5	< 5.0	< 5.0	< 5.0	0.00	000	000	000	000	250	200	2 40	0.00	200	0.28900	
snadsomoroldsomor		UV.	NA	020	0.50	<5.0	<5.0	0.00	<.5.0	< 5.0	NA	NA	0.0	0.00	0.0	<5.0	0.0	NA	N.V.	NA.	050	9.0	979	<1.0	<5.0	< 5.0	<5.0	C(C)	N. S	N.	0.0	0.0	0.00	000	000	097	200	NA	
энэхизфошол		INA	NA	0.00	<5.0	<5.0	<5.0	<5.0	< 5.0	< 5.0	NA	NA	99	0/9	920	<5.0	0.00	NA	NA	NA OSC	050	050	65.0	<1.0	< 5.0	<.5.0	< 5.0	6.5.9	NA	NA	0.0	0.0	0.0	000	000	250	west.	NA	
cuzcuc	B	650	<5.0	<5.0	<5.0	<5.0	<5.0	0.6>	< 5.0	< 5.0	050	<500	0.50	<5.0	<5.0	<5.0	<5.0	0.65	0.00	0.00	080	050	9	<1.0	< 5.0	< 5.0	< 5.0	< 5.0	00	0.00	0.00	0.00	0.0	200	0000	2.60	0.00	2	
crylenitrile		NA	NA	<250	<250	<250	<250	<250	< 100	< 100	NA	NA	<250	<250	<250	<250	<250	NA	NA	NA OSCO	2000	050	250	<50.0	< 100	< 100	< 100	001 >	NA	NA	<250	4250	0000	0075	001 >	2001	1000	NA	
crolein		NA	NA	<250	<250	C250	<250	<250	< 100	< 100	NA	NA	C250	<250	250	C250	<250	NA	NA	NA	2000	050	050	2000	<100	001>	<100	001>	NA	N.A.	250	250	007	0000	0015	0015	c Iwo	NA	
эцөзээ	v					<50	<50		< 100	1				<50								-		0											2000		1	3,040	
Lab Sample		-	=		17	280692 <		-	503002560 <	503237141 -	W5090134-02 <200	-15	253793 <				324155	W5090134-03 <	W7020074-16 <20	W7020074-24 <20	Т	T	Π						W7020074-19	0	П	T	T	Т	Т	т	203493230		
erval	İ			5-20	5-20	5-20	5-20	5-20	5-20			14-29	14.29	14.29	14.29	14.29	14-29			1	3-20	3-50	5.20	5-20	5-20	5-20	5-20	5-20	5-20	5-20	5-20	5-20	5-20	2-20	2-50	02-5	2-50	dwater 0.0	
	Date Sampled	7/14/1995	2/5/1997	11/23/1999	2/28/2000	11/8/2000	6/21/2001	7/22/2002	12/03/2003	3/11/2004	9/11/1995	2/6/1997	11/23/1999	2/28/2000	11/8/2000	6/21/2001	7/19/2002	9/11/1995	2/6/1997	2/6/1997	986187711	000000000	10002/00/9	7/18/2002	12/04/2003	3/11/2004	6/11/2004	6/11/2004	2/6/1997	2/26/1997	2/29/2000	11/8/2000	6/21/2001	7/19/2002	12/04/2003	3/11/2004	6/4/2004	Tier II Residential Cleanup Goals - Groundwater UT	
	Sample No.	MW-154	MW-154	MW-154	MW-154	MW-154	MW-154	MW-154	4W-154	MW-154	VIW-155	MW-155	MW-155	MW-155	MW-155	4W-155	dW-155	MW-156	dW-156	MW-156 Dup	061-W1	MW-150	MW-156	MW-156	4W-156	MW-156	MW-156	MW-156DUP	MW-157	MW-157 Dup.	MW-157	MW-157	MW-157	MW-157	MW-157	MW-157	MW-157	Residential Cle	

2.8	1
1L	61
	- 66
124	_ ed_
122	150
	below
2	
122	
. 155	
15	
,74	
-	
-	
- 555	
120	
3	
-	
756	
12	
130	
- 25	
2	
- 22	
ಿರ	
100	
-50	
154	
16	
- 12	
- 70	
- 32	
- 575	
- 963	
- 1	
194	
-05	
- 20	
-52	
75	
754	
- 62	
-	

MW-158 2.6f/1997 14-29 No. 4 A MW-158 11f/23/1999 14-29 25/3794 <0 <2.50 <2.50 MW-158 2.128/2000 14-29 2.50/92 <0 <0.50 <0 MW-158 2.128/2000 14-29 2.50/92 <0 <0.50 <0 <0.50 <0 <0.50 <0 <0.50 <0 <0.50 <0 <0.50 <0 <0.50 <0 <0.50 <0 <0.50 <0 <0.50 <0 <0.50 <0 <0.50 <0 <0.50 <0 <0.50 <0 <0.50 <0 <0.50 <0 <0.50 <0 <0.50 <0 <0.50 <0 <0.50 <0 <0.50 <0 <0.50 <0 <0.50 <0 <0.50 <0 <0.50 <0 <0.50 <0 <0.50 <0 <0.50 <0 <0.50 <0 <0.50 <0 <0.50 <0 <0.50 <0 <0.50 </th <th>8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>NA B</th> <th></th> <th>8</th> <th> NA NA NA NA NA NA NA NA</th> <th>N N N N N N N N N N N N N N N N N N N</th> <th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th></th> <th>\$50 \$50 \$50 \$50 \$50 \$50</th> <th><10 <5.0</th> <th>C10</th> <th>CP</th> <th>-Сири</th>	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NA B		8	NA NA NA NA NA NA NA NA	N N N N N N N N N N N N N N N N N N N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		\$50 \$50 \$50 \$50 \$50 \$50	<10 <5.0	C10	CP	-Сири
1/12/1099		\$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50						8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8					N/N	NA
11/23/999		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		\$\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\				\$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50				C10.	650	<5.0
22.882000 14-29 280684 450 4250		\$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50						\$5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					<5.0	<5.0
11/2000		\$ 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		\$\frac{1}{2}\$\frac				8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8					<5.0	<5.0
Control Cont		\$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50		(10) (10) (10) (10) (10) (10) (10) (10)				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			<10, <20		65.0	<5.0
11/172002		\$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50		(10. 10. 10. 10. 10. 10. 10. 10. 10. 10.				8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			<10.		65.0	<5.0
2.28-2000		\$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50		(10. 10. 10. 10. 10. 10. 10. 10. 10. 10.				\$50 \$50 \$50 \$50 \$50 \$10		0	<10. <20	0 <10.	<5.0	<5.0
1/7/2000		\$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50		 <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <10. <l></l>				0.000000000000000000000000000000000000	0-1		<10. <20		<5.0	<5.0
C C C C C C C C C C		\$50 \$50 \$410 \$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50 \$5		<10. <10. <10. <10. <10. <10. <10. <10. <5.0 <5.0				0.000000000000000000000000000000000000	<5.0				<5.0	0.5
7/19/2002 Unicown 324/52 <60 <250 3/2/2000 3-1/3 260/551 <60 <224 11/8/2000 3-1/3 280/697 <60 <224 671/2001 3-1/3 296/17 <60 <225 7/17/2002 3-1/3 294/27 <20,0 7/17/2002 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <20,0 7/17/2004 3-1/3 5/20/201 <2		\$50 \$50 \$10 \$10 \$10 \$10 \$10		<10. <10. <10. <10. <5.0 <5.0 <5.0				0.000				0 <10.	<5.0	<5.0
37/2000 3-13 260551 <50 <250		<50<1.0<1.0<50		<10. <10. <5.0 <5.0 <5.0				0.000				I	0.00	0.0
118,2000 3-13 230698 <60 <250 (21,120) 231,13 236,17 <60 <250 7117,2002 3-13 324,023 <20,0 <50,0 7117,2004 3-13 35,000,000 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <1		5.0 5.0 5.0 5.0 5.0 5.0 5.0		65.0 CE CE CE CE CE CE CE CE CE CE CE CE CE				0.00	0.0	1	I	I	0.85	0.0
6/21/2001 3-13 296417 <50 <250 7/17/2002 3-13 324027 <20.0 <50.0 7/17/2002 3-13 324028 <20.0 <50.0 12/04/2003 3-13 503002610 <100 <100 3/11/2004 3-13 503237281 <100 <100		<5.0 <1.0 <1.0 < 5.0		<10. <5.0 <5.0 <5.0				0.10			1		65.0	0.0
7/17/2002 3-13 324/27 <20.0 <50.0 7/17/2002 3-13 324/23 <20.0 <50.0 12/04/2003 3-13 503902610 <100 <100 3/11/2004 3-13 5033/281 <100 <100		<1.0	I	65.0 < 5.0				<1.0					65.0	0.0
71172002 3-13 334023 <20.0 <50.0 12044203 3-13 503002610 <10.0 <10.0 3-13 503302610 <10.0 <10.0		<1.0		<5.0							1	T	CTV	0.15
12/04/2003 3-13 503002610 <100 <100 3/11/2004 3-13 503237281 <100 <100	h	Ť	1	< 5.0		1	İ	61.0	0.15	0.1>	CS.0	0.00	0.15	O.I.S
3/11/2004 3-13 503237281 < 100 < 100	ı		<5.0 <5.0		Ť	5.0	Ť	< 5.0			T	T	25.0	V 25.0
		< 5.0		<5.0			Ť	< 5.0			T	T	0.65	25.0
6/4/2004 3-13 503493264 < 100 < 100	< 5.0 < 5.0	< 5.0		< 5.0	1	1	T	< 5.0		T	T	0.0	0.50	200
3/2/2000 3-13 260552 <50 <250		<5.0		<10.	1	1	0.0	0.0		I	T	T	2000	000
3-13 280699 <50 <250	<5.0 <5.0	<5.0	S0 S0	<10.	5.0	1	T	0.0	000	0.0	410. CZU	T	0.00	25.0
621/2001 3-13 296416 <50 <250		65.0	18	<10.		1		0.0		1	T	1	C2.0	200
<20.0 <50.0		<1.0		0.50			Ť	CI.0				Ť	T	0.15
MW-161 12/04/2003 3-13 503002628 < 100 < 100 < 100		< 5.0		<5.0		< 5.0 < 5.0	T	< 5.0	×3.0			Ì	0.00	43.0
3/11/2004 3-13 503237299 < 100 < 100		<5.0		<5.0			< 5.0	< 5.0		I	T	Ī		20.0
6/4/2004 3-13 503493272 < 100 < 100	< 5.0 < 5.0	< 5.0	< 5.0 < 5.0	< 5.0	<5.0		1	< 2.0		1		Ť	V.S.N.	A SA
11/8/2000 NA 280700 <50 <250		979		<10.				0.0		I	I	Ì	0.0	000
NA 296394 <50	<5.0 <5.0	0.50		<10.			1	0.0		000	C10.		0.00	0.0
7/18/2002 10-20 324118 <20.0 <50.0		0.1>	İ	0.0			1	CL.0		I	T	200	000	200
11/8/2000 NA 280701 <50 <250		0.50		<10.	<5.0		T	0.00		Ī	T	T	0.0	000
6/20/2001	<5.0 <5.0	0.50		<10.			T	0.0		I	T	1	0.0	000
<50.0		0.1>	<1.0 <10	€5.0				0.15		1			0.15	015
324119 <20.0 <50.0	<1.0	<1.0	<1.0 <1.0	65.0	<1.0 <1.0		<1.0	<1.0	<1.0	0.1>	<5.0	Ì	0.15	0.15
11/7/2000 16-26 280702	65.0	0.50	650 <50	<10.	<5.0 <5.	0.5>	<5.0	0.50				Ì	0.00	0.0
6/21/2001 16-26 296413	<5.0 <5.0	0.55	5.0 <5.0	<10.	<5.0 <5.	0.5> 0.3	0.50	6.0				.01×	<5.0	0.00
7/19/2002	<5.0 <5.0	0.50	SO <50	<10.	<5.0 <5.	6.0 6.0	65.0	65.0	0.0	65.0	<10.	<10.	<5.0	0.0
MW-164 12/05/2003 16-26 503002636 < 100 < 100 < 100	< 5.0 < 5.	0 <5.0	c 5.0 < 5.0	< 5.0	< 5.0 < 5	5.0 <5.0	< 5.0	<5.0	< 5.0	< 5.0	< 5.0	0.0	< 2.0	0.65
3/11/2004	<5.0 <5.0	0 < 5.0	c5.0 < 5.0	< 5.0	< 5.0 < 5	5.0 < 5.0		< 5.0	< 5.0	< 5.0		< 5.0 < 5.0	< 5.0	< 2.0
6/4/2004 16-26 503493249	< 5.0 < 5.0	0 < 5.0	<5.0 <5.0	< 5.0	< 5.0 < 5	<5.0 <5.0	< 5.0	< 5.0	<5.0	< 5.0	< 5.0	0.0	< 2.0	< 2.0
	The state of the s				H	ŀ	1 1 0000	42	(7)611	10	22.161	NA NA	NA	NA
Tier II Residential Cleanup Goals - Groundwater 19	0	NA NA	0.289 NA	NA.	40	10	1,000	J	117	1909	4	ł	ł	

Reference 36

Table 9a - Shallow Monitoring Well Croundwar

١				
ı				
ı				
١				
ı	8			
ı			-	
	20	т	-	
	4	м	9	
	32		9	
	0	в	н	
1	100	П	30	
	12		10	
	9			
	展	ы		
	9	я		
	細			
	8	-		
	\mathbf{z}	2		
	в	8	ы	
	岩	ъ	3	
	12	8		
	2	-	Đ	
ł	2	æ	н	
	54	8		
	the	2		
	ds c	ods the	ы	
	-8			
	d excee	d		
	-	÷		
	100	в		
	8.4	в		
	眉			
	8	- 8		
		5		
	2	8	10	
	14	3		
	15	3		
J			6	ı

	Сиютодіргототстви	0.5>	€5.0	<1.0	< 5.0	< 5.0	< 5.0	<5.0	<1.0	< 5.0	< 5.0	< 5.0	< 5.0	<5.0	<1.0	< 5.0	< 5.0	< 5.0	0.50	<1.0	<1.0	0.50	0.1>	< 5.0	< 5.0	< 5.0	0.5	999	0.1>	100	NA
	Chlorobenzene	6.0	0.5>	0.1>	< 5.0	< 5.0	< 5.0	65.0	0.1>	<50	<5.0	<5.0	<50	6.50	0.1>	< 5.0	<5.0	<5.0	<5.0	0.1>	0.1>	<5.0	0.15	< 5.0	<5.0	<5.0	<5.0	€50	0.10		112
	Carbon tetrachloride	<5.0	<5.0	<1.0	< 5.0	< 5.0	< 5.0	<5.0	<1.0	< 5.0	< 5.0	< 5.0	< 5.0	<5.0	<1.0	< 5.0	< 5.0	< 5.0	6.0	<1.0	<1.0	6.0	<1.0	< 5.0	< 5.0	< 5.0	<5.0	€5.0	0.1>		N.V.
	Carbon disulfide				< 5.0				<1.0								< 5.0				<1.0		<1.0					65.0			1,060
	tert-Butylbenzene	0.50	6.0	<1.0	< 5.0	< 5.0	< 5.0	<5.0	<1.0	< 5.0	< 5.0	< 5.0	<5.0	65.0	<1.0	< 5.0	<5.0	< 5.0	65.0	<1.0	0.15	6.0	0.1>	<5.0	<5.0	<5.0	65.0	6.0	0.1>	0000	50
	auazuaqı/ing-əas	65.0	<5.0	<1.0	< 5.0	<.5.0	< 5.0	- 0.5>	<1.0	<5.0	< 5.0	< 5.0	< 5.0	0.5>	<1.0	< 5.0	< 5.0	< 5.0	65.0	0.1>	0.1>	0.5>	0.1>	< 5.0	<5.0	< 5.0	65.0	0.0	0.1>		64
	u-Butylbenzene	65.0	<5.0	0.1>	< 5.0	< 5.0	< 5.0	6.50	<1.0	< 5.0	<5.0	< 5.0	< 5.0	<5.0	0.1>	< 5.0	< 5.0	< 5.0	6.50	<1.0	0.1>	6.65	0.1>	< 5.0	<5.0	< 5.0	<5.0	<5.0	<1.0		64.0
A SCHOOL AS	Вгототеграпе	<10.	<10.	<5.0	< 5.0	< 5.0	< 5.0	<10.	<5.0	< 5.0	< 5.0	< 5.0	< 5.0	<10.	<5.0	< 5.0	< 5.0	< 5.0	<10.	<5.0	<5.0	<10.	65.0	<5.0	<5.0	< 5.0	<10.	<10.	0.50		NA
A CONTRACT LINE CONTRACT CONTR	штејетоз	<5.0	<5.0	0.15	<5.0	5.0	5.0	<5.0 <5.0	0.15	< 5.0	< 5.0	5.0	< 5.0	65.0	0.15	< 5.0	< 5.0	c.5.0	65.0	<1.0	0.15	<5.0	<1.0	< 5.0	< 5.0	< 5.0	- 0/9	<5.0	(10		NA
	Bromodichloromethane		<5.0	0.1>	< 5.0	< 5.0	<5.0	<5.0	<1.0 A	< 5.0	< 5.0	<.5.0		<5.0 ×	- 0.1>		< 5.0	< 5.0	<5.0	<1.0	<1.0		<1.0	< 5.0			<5.0				NA 0.289**
	Bromochloromethane	050	050	<1.0	< 5.0	< 5.0	< 5.0	0'5>	<1.0	< 5.0	< 5.0	< 5.0	< 5.0	<5.0	<1.0	< 5.0	< 5.0	< 5.0	650	<1.0	<1.0	<5.0	<1.0	< 5.0	< 5.0	< 5.0	<5.0	<5.0	<1.0		NA
	Втоторепхене	<5.0	<5.0	<1.0	< 5.0	< 5.0	< 5.0	<5.0	<1.0	< 5.0	< 5.0	< 5.0	< 5.0	<5.0	<1.0	< 5.0	< 5.0	< 5.0	<5.0	<1.0	<1.0	<5.0	<1.0	< 5.0	< 5.0	< 5.0	<5.0	<5.0	<1.0		NA
	genzene	65.0	<5.0	0.1>	< 5.0	< 5.0	< 5,0	<5.0	<1.0	<5.0	< 5.0	< 5.0	< 5.0	<5.0	0.1>	< 5.0	< 5.0	< 5.0	<5.0	0.1>	<1.0	<5.0	0.1>	< 5.0	< 5.0	< 5.0	<5.0	<5.0	<1.0		60
	Acrylonitrile		NA	0.05>	<100	< 100	< 100	NA	0.05>	< 100	< 100	< 100	< 100	NA	<50.0	< 100	< 100	< 100	NA.	<50.0	<50.0	<250	<50.0	< 100	< 100	< 100	<250	<250	<50.0		YZ.
	ecrolein		NA	<50.0	<100	< 100	< 100	NA	<50.0	< 100	< 100	< 100	< 100	NA	<50.0	< 100	< 100	< 100	NA.	<50.0	<50.0	<250	<50.0	001>	< 100	< 100	6250	<250	<50.0		VZ.
	уседоне		<50	<20.0	100	100	100	50	<20.0	-100	< 100	100	< 100	50	20.0	001	001 >	001 >	-50	20.0	20.0	50	<20.0	001 >	c 100	< 100	99	- 09	<20.0		3,040
	Lab Sample	Т	294564		4		5	Г	324106	100		503237067		294566										503002693			313002		324023		
	Screen Interval	10-20	10.20	10:20	10.20	10.20	10:20	10.20	10.20	10.20	10-20	10:20	10.20	12:22	12.22	12:22	12:22	12.22	12:22	12:22	12.22	15.25	15.25	15-25	15-25	15-25	17:27	17-27	17:27		adwater 17
	Parte Sampled	1002/1/9	6/1/2001	7/18/2002	12/05/2003	3/11/2004	6/3/2004	6/1/2001	7/18/2002	12/19/2003	12/19/2003	3/11/2004	6/3/2004	6/1/2001	7/17/2002	12/04/2003	3/11/2004	6/3/2004	6/1/2001	7/18/2002	7/18/2002	1/30/2002	7/17/2002	12/04/2003	3/11/2004	6/3/2004	1/31/2002	1/31/2002	7/17/2002	The second second	anup Goals - Grou
	Semanla No.	MW-1655	MW-165S Duo.	MW.165	MW-1658	MW-1658	MW-1655	MW-166S	MW-166	MW-1665	MW-166S DUP	MW-166S	MW-166S	MW-167S	MW-167	WW-167S	MW-167S	WW-167S	WW-168S	MW-168	MW-1685 Dup.	S691-MM	S691-MM	S691-MW	S691-MM	S691-MW	WW-170S	MW-170S Dup.	MW-170S	STATE OF STREET	Tier II Residential Cleanup Goals - Groundwater

FOTTHER General Motors Corporation
Allison Gas Turbine Division, Plant 10
Indianapolite, Indiana
IDEM VRP 96991004
KFD AMTER.

Reference 36

Table 9a
Trable 9a
Trable 9a
Trable 9a
Trable 9a
Trable 9a
Trace General Motors Corporation
Allison Gas Turchine Bivision, Plant 10
Indianapolis, Indianapol

	Reference 36	Page 160
Ethyl methacrylate	NA NA NA NA NA NA NA NA NA NA NA NA NA N	Table 9n - Shallow Monitoring Well Groundwater - VOCs Page 9 of 32
Ethylpenzene	N	Well Ground
2 Егиді Усебите 2	Z Z Z Z V V V V V V V V V V V V V V V V	dontroring
S. S. S. Dichloropropene	NANA NANA NANA NANA NANA NANA NANA NAN	- Shallow A
S cis-1,3-Dichloropropene	NNA NAA NAA NAA NAA NAA NAA NAA NAA NAA	Table 9n
S. 1.1-Dichloropropene	NS NAA NAA NAA NAA NAA NAA NAA NAA NAA N	
5.2-Dichloropropane	A A A A A A A A A A A A A A A A A A A	
Z. I.3-Dichloropropane	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	17.58
Z. Dichloropropane	N N N N N N N N N N N N N N N N N N N	
Sometheorold Sold Sold Sold Sold Sold Sold Sold S	N.S. NS	
S cis-1,2-Dichloroethene	NNS ND 1609 ND 1900 1900 1900 1900 1900 1900 1900 1900	
S. I.1-Dichloroethene	NN NA NA NA NA NA NA NA NA NA NA NA NA N	
Z. L.2-Dichloroethane	N N N N N N N N N N N N N N N N N N N	
S. N. IDichloroethane	NS NS NS NS NS NS NS NS	
Solution States Solution States Solution Solutio	X X X X X X X X X X X X X X X X X X X	
S Dichlorodifluoromethane	N N N N N N N N N N	44 996
Z. 1,4-Dichlorobenzene	N N N N N N N N N N N N N N N N N N N	
S. S. Dichlorobenzene	N N N N N N N N N N N N N N N N N N N	10 1966
S S S S S S S S S S S S S S S S S S S	N N N N N N N N N N N N N N N N N N N	
S. Dibromomethane	N N N N N N N N N N N N N N N N N N N	
Z (N) 1,2-Dibromoethane (EDB)	NN NN NN NN NN NN NN NN NN NN NN NN NN	
Z. I,2-Dibromo-3- chloropropunc	N N N N N N N N N N N N N N N N N N N	
Z-Chloroethyl vinyl ether	NNA NNA NNA NNA NNA NNA NNA NNA NNA NNA	
Lab Sample No. 503207557	NA	
rval		
	3.74/2004 3.74/2004 3.72/1994 11/23/1999 11/23/1999 11/23/1999 11/23/1999 2.29/2009 2.29/2009 2.29/2009 2.71/2004 3.11/2004 64/2004	
	Continue Check the Check t	

	Reference 36 Page 16
Ethyl methacrylate	NA NA NA NA NA NA NA NA
Sthylbenzene	14.A. 1.10. 14.A. 1.10. 14.A. 1.10. 14.A. 1.10. 15.5.0. 16.5.
Sthyl Acetate	MAN MAN MAN MAN MAN MAN MAN MAN MAN MAN
anaqorqoroidald-E,1-ensr	NA NA NA NA NA NA NA NA NA NA NA NA NA N
ənəqorqoroldəid-£,1-zi	
onsqorqoroldəld-I,	286 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
-S.Dichloropropane	N N N N N N N N N N
эпвиоториона (-5,	X
2-Dichloropropane	▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
snadboroldbid-2,1-enn	C C C C C C C C C C
serl,2-Dichloroethene	C C C C C C C C C C
- Dichloroethene	2
2-Dichloroethane	
utene Dichloroethane	
-2-ovoldai(I-4, I-entr	X X X X X X X X X X X X X X X X X X X
Mchlorodifluoromethane	<u> </u>
ənəsnədoroldəid-4,	N N N N N N N N N N
snastnadoroldajd-£,	<u>≅₹₹₽₽₽₽₹₽₽₽₽₹₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽</u>
susvnsdoroldsiG-£,	
ibromomethane	A A A B B B B B B B B B B B B B B B B B
bloropropane (HGA) sundestinate (HGA)	
-£-omordid-£	' <u>로로 등 물로 등 성명 명명 중 명로로 영명 명명 명명 중 등 로로</u> 원명 명명 명명 <u>당당 중 용로로 중 </u> 영영 명
Chloroethyl vinyl ether	
Lab Samp	NAA NAA (NAA (NAA (NAA (NAA (NAA (NAA (
Screen Interval	
	MW-135 9/1992 10-20 MW-135 9/1992 10-20 MW-135 9/1992 10-20 MW-135 9/1992 10-20 MW-135 9/1992 10-20 MW-135 9/1992 10-20 MW-135 9/1992 10-20 MW-135 9/1992 10-20 MW-135 9/1992 10-20 MW-135 9/1992 10-20 MW-135 9/1992 10-20 MW-135 9/1992 10-20 MW-135 9/1992 10-20 MW-135 9/1992 10-20 MW-135 9/1992 10-20 MW-135 9/1992 10-20 MW-135 9/1992 10-20 MW-135 9/1992 10-20 MW-145 9/1992 10-20 MW-145 9/1992 10-20 MW-145 9/1992 10-20 MW-145 9/1992 10-20 9/1992 10-20 MW-145 9/1992 10-20 9/1992 10-20 MW-145 9/1992 10-20 9/1992
	MW-135 911953 MW-135 MW-145 MW-145 MW-145 MW-145 MW-145 MW-145 MW-145 MW-145 MW-145 MW-146 MW-147 MW-146 MW-146 MW-147 M

	Reference 36 Page 162
C C C C C C C C C C	Groundwater - VOCs
S S S S S S S S S S S S S S S S S S S	10,220 Tell Ground
Epipi yocanie	NA 102
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
энэqorqorioinid(L-f.1-sip.) 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	NA NA NA NA NA NA NA NA NA NA NA NA NA N
\$\text{\$\frac{1}{2}\text{\$\frac{1}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}\text{\$\frac{1}\text{\$\frac{1}\text{\$\frac{1}\text{\$\frac{1}\text{\$\frac{1}\text{\$\frac{1}\text{\$\frac{1}\text{\$\frac{1}\text{\$\frac{1}\$\	28.6 44
S S S S S S S S S S S S S S S S S S S	Y Z
\$\text{\$\frac{1}{2}\text{\$\frac{1}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}\text{\$\frac{1}\text{\$\fint}\text{\$\frac{1}\text{\$\fint}\text{\$\frac{1}\text{\$\frac{1}\te	Z Z
\$\rightarrow\rightarro	ž ž
### ##################################	2,040 ¹¹
900 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1,022
\$\frac{1}{2}\frac{1}{2	<i>L</i>
\$\rightarrow\rightarro	2 41
\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	10,220
-2-oroldai(I-h,I-aneri) \$\begin{align*} \text{\lambda} \\ \	X X
Obstation Obst	N N
\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1192
A S S S S S S S S S S S S S S S S S S S	98 X
\$\langle \frac{1}{2}\limin \fr	009
Dibromomethane	X X
amaqarquromtha-	× ×
4-comprehensive to the property of the propert	X X
2 2 2 2 2 2 2 2 2 2	Z Z
Lab Sample No. 33.4189 84.2912 84.2912 84.2912 84.2912 84.2914 87.02.00.327 26.05.82 28.06.87	See of Se
Serven Interval (feet) 20-30 2	Groundwater ⁽¹⁾ Sold - Groundwater ⁽²⁾ Tee II Soldwater all Chemy Con The II Resident
Date Sampled 7722/2002 5/722/002 8/222/2003 3/11/2004 6/4/2004 6/4/2004 6/4/2004 6/4/2004 6/4/2004 11/8/2000 11/8/2000 6/21/2003 5/2/2003	II Residential Cleamp Goals - Groun II Nova-Residential Cleamp Goals - (gad Goarpood screek file VIP Ter II gad Composed screek file VIP Ter II gat page for footnotes ast page for footnotes
Sample No. MW-147.A MW-147.A MW-147.A MW-147.A MW-147.A MW-148.A MW-148.A MW-148.A MW-148.A MW-148.A MW-148.A MW-148.A MW-148.A MW-148.A MW-148.A MW-148.A MW-148.A Dup. MW-148.A Dup. MW-148.A Dup. MW-148.A Dup. MW-148.A Dup. MW-148.A Dup. MW-148.A Dup. MW-148.A Dup. MW-148.A Dup. MW-148.A Dup. MW-148.A Dup. MW-148.A Dup. MW-148.A Dup. MW-148.A Dup. MW-148.A Dup. MW-148.A Dup. MW-149.A Dup.	for II Residential Cleanup Goods. For II Non-Residential Cleanup Goods. For II Non-Residential Cleanup II Common Goods and Application of the Appl

	Reference 36 Page 16	3
Ethyl methacrylate	Color Colo	
Etph]penxene	Complete Com	
Ethyl Acetnie	A Selection	
anaqorqorothaid-5-1-eniral	Z Z Z Z Z Z Z Z Z Z	
snsqorqeroldsid-5-1-eis	A A A A A A A A A A A A A A A A A A A	
1,1-Dichloropene	NA NA NA NA NA NA NA NA NA NA NA NA NA N	
sunqorqoroldsid-2,2	A A A A A A A A A A A A A A A A A A A	
snaqorqorolfisid-£,1	X X X X X X X X X X X X X X X X X X X	
snaqorqoroldsiG-2,1	NA NS S S S S S S S S S S S S S S S S S	
ons-fl-engra	C C C C C C C C C C	
cis-1,2-Dichloroethene	C C C C C C C C C C	
ansdraorotdoid-1,1	2	
onnthorothid-2,1	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	
1,1-Dichloroethane	2	
-2-orolchloro-2- nuene	NA NA NA NA NA NA NA NA NA NA NA NA NA N	
Dichlorodifluoromethane	NA NA NA NA NA NA NA NA NA NA NA NA NA N	
1,4-Dichlorobensene	100 100	
sussendoroldsld-£,1	C C C C C C C C C C	
snavnsdoroldald-£,1	C C C C C C C C C C	
Dibromomethane	NA NA NA NA NA NA NA NA NA NA NA NA NA N	
1,2-Dibromoethane (EDB)	X X 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
-E-omordiG-2,1 anagorgorolda	NA NA NA NA NA NA NA NA	
5-Chloroethyl vinyl ether	A A S C C C C C C C C C C C C C C C C C	
Lab Sample No.	253809 286659 286659 286659 286659 286659 286659 286659 286659 28669 2869 28	
rva le		
Date Sampled		
Sample No.	MW-151 MW-151 MW-151 MW-151 MW-151 MW-151 MW-151 MW-151 MW-152 MW-152 MW-152 MW-152 MW-152 MW-152 MW-152 MW-152 MW-152 MW-153	

		Reference 36 Page 164
	Ethyl methnerylnie	13 of 37
	Ethylbenzene	We with the control of the control o
	Ethyl Acetale	Monitoring A A A A A A A A A A A A A A A A A A A
	ənəqorqoroldəid-£,1-enari	Sign of the control o
	snaqorqoroldaid-6,1-zis	AN A A A A A A A A A A A A A A A A A A
	1,1-Dichloropropene	NAA (S 0 (
	2,2-Dichloropropane	NA A S S S S S S S S S S S S S S S S S S
	3.3-Dichloropropane	NA NA NA NA NA NA NA NA NA NA NA NA NA N
	annqoropropane	N N N N N N N N N N N N N N N N N N N
	snsitisoroldold-£,f-znart	2.04040
	ens-fl-chloroethene	C C C C C C C C C C
	1,1-Dichloroethene	
	sundrsovoldsid-£,1	2
2829E	3 Indichloroethane	\$\frac{5}{5}0\$\$\$\$\frac{5}{5}0\$\$\$\$\$\frac{5}{5}0\$\$\$\$\$\$\frac{5}{5}0\$\$\$\$\$\$\$\$\$\$\frac{5}{5}0\$
reject No.	trans-1,4-Dichloro-2-	
KERAMIDA Project No. 2829E	энифэниотоппейние Отсріоторії поставине	N N N N N N N N N N
KE	susstandoroldraid-4,1	\$\frac{10}{2}\$
	3.3-Dichlorobenzene	1
	3n3sn3doroldsiQ-2,1	
	Dibromomethane	NA NA NA NA NA NA NA NA NA NA NA NA NA N
	(EDB) Janusthame (EDB)	A A A A A A A A A A A A A A A A A A A
	-£-Dibromo-3- anaqorqorold	
	2-Chloroethyl vinyl ether	
	Lab Sample No.	787 191 - 1.2 787 - 188
	is c	995 5-20 WY07070000 S-20 260 0
	Date Sampled	7/14/1995 2/26/2000 11/2000 11/2000 11/2000 17/22/2000
	Sample No.	MW-154 MW-154 MW-154 MW-154 MW-154 MW-154 MW-155 MW-155 MW-155 MW-155 MW-155 MW-156 MW-156 MW-156 MW-156 MW-156 MW-157 MW-156 MW-157

		Reference 36	Page 165
	Ethyl methaerylate	NA NA NA NA NA NA NA NA	
	Ethylbenzene	200000000000000000000000000000000000000	
	Ethyl Acetate	22222222222222222222222222222222222222	
	onsquaquaoldsid-6,1-enna	[설립전설] 전설 전설 전설 전설 전설 전설 전 전 전 전 전 전 전 전 전	
	snaqorquopinetal-t-t-t-t-	A A A A A A A A A A A A A A A A A A A	
	anaqorqoreldald-1,1	11 N N N N N N N N N	
	anaqorqoroldald-2,5	*** M M M M M M M M M	
	-3-Dichloropropane	M N N N N N N N N N N N N N N N N N N N	
	3.2-Dichloropropane	**************************************	
	sundboroldsiG-S,f-smax	25.5	
	snatheorothche. L.sl. Dichloroethene	Control Cont	
	-IDichloroethene	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	101
	эпилэотойлэіС-2,	4.1. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100
2829E	onaritoroldoid-1,	\$\begin{array}{c c c c c c c c c c c c c c c c c c c	
roject No.	-S-oroldold-b,f-sner ensing		
KERAMIDA Project No. 2829E	Oichiorodifluoromethane	MA NA C C C C C C C C C C C C C C C C C C	10.5
KER	-Pichlorobenzene	\$\\\ \frac{4.0}{2.0} \\ \frac{6.0}{2.0} \\ 6.	4 (4)
	ənəxnədoroldəid-£,	4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	snsxnsdoroldsid-2,	1,2 1,2 2,2	
	ənadəmomordiC	A NA NA NA NA NA NA NA NA NA NA NA NA NA	
	(8G3) snadtsomordid-2,	A	
	-6-omordid-2, omorgonopho		
	-Chloroethyl vinyl ether		
	Lab Sample		
	rval		
		26/1997 21/6/1997 21/6/1997 21/6/1997 21/26/2009 21/26/	
		Sample No. NW-188 NW-188 NW-188 NW-188 NW-188 NW-189 NW-199 NW-199 NW-199 NW-199 NW-199 NW-190 NW-190 NW-190 NW-190 NW-190 NW-190 NW-190 NW-190 NW-190 NW-190 NW-190 NW-190 NW-190 NW-190 NW-191 NW-191 NW-191 NW-192 NW-193 NW-194 NW-195 NW-195 NW-195 NW-195 NW-195 NW-195 NW-195 NW-195 NW-195 NW-196 NW	

19			Screen Interval	Lab Sample	Chloroethyl vinyl ether	-6-omordid-2, anaqorqoroli	2-Dibromoethane (EDB)	dbromomethane	2-Dichlorobenzene	3-Dichlorobenzene	ənəxnədereldəid-b,	əmadəmoroufiləorotdəid	-S-oroldald-4, L-sner snetu	-1-Dichloroethane	-2-Dichloroethane	snadisorotdald-1,	enetherelicitore	ens-theorethene and the state of the state o	onnqovopronate.	2. Dichloropropane		anaqorqoroldald-1,	naqorqoroldiskl-E,1-engr	Sthyl Acetate	gp/lpenzene	уру темпестува
1982 1982		Date Sampled	(Ref.)	No.	2 5		737	1017	I	100		1	0	Icy	Ţ	I c	N N CS	2		999	55.0	5	3	NA	0.60	
39,000,000,000,000,000,000,000,000,000,0	AVID TAKE Dura	67173001	10-20	2005452	2	750.	200	9	200	080			IA I	60		0	23.6 65.0				<5.0	<5.0	65.0		65.0	Y.Y
Company Comp	MW-1025 Dup.	2007070	02-01	201100	100	- NO.	Y	100	007	017	T		200	40		0	OLD BAN	T	T	<1.0	<1.0	<10	<1.0	NA	0.15	<5.0
1985 1985	MW-1655	12/05/2002	10.20	503002644	050	< 50	CSD	650	<50	< 50	T	T		T		5.0	25 < 5			İ	< 5.0	< 5.0	< 5.0	NA	< 5.0	< 100
200 530 650 <td>MW-1658</td> <td>\$/11/2004</td> <td>10-20</td> <td>503237083</td> <td>< 50.</td> <td>< 5.0</td> <td>< 5.0</td> <td><5.0</td> <td><5.0</td> <td>< 5.0</td> <td>< 5.0</td> <td></td> <td>1</td> <td>> 0.53</td> <td>5.0</td> <td>0.3</td> <td>23 < 5.</td> <td></td> <td></td> <td></td> <td>< 5.0</td> <td>< 5.0</td> <td>< 5.0</td> <td></td> <td>< 5.0</td> <td>< 100</td>	MW-1658	\$/11/2004	10-20	503237083	< 50.	< 5.0	< 5.0	<5.0	<5.0	< 5.0	< 5.0		1	> 0.53	5.0	0.3	23 < 5.				< 5.0	< 5.0	< 5.0		< 5.0	< 100
Suggestive NA	MW-165S	6/3/2004	10-20	503493066	< 50.	< 5.0	<5.0	<5.0	< 5.0	< 5.0	<5.0		İ	> 0.53	5.0	0.3	19 < 5.				< 5.0	< 5.0	< 5.0		< 5.0	< 100
34106 \$\iiiiii	MW-1668	6/1/2001	10-20	294565	Y.Y	<50.	0.50	<10.	<5.0	650	<5.0	<10		Ė		0.	55. 0.1				<5.0	<50	<5.0		6.0	Y.
200 \$500	MW-166	7/18/2002	10-20	324106	0.50	<5.0	6.50	0.1>	0.1>	6.15				Ť		0.	222	0.15			<1.0		<1.0		0.15	<5.0
State Stat	MW-166S	12/19/2003	10-20	503046765	< 50.	< 5.0	<5.0	<.5.0	<5.0	< 5.0						5.0	170	55 < 50			< 5.0		< 5.0		<5.0	< 100
State Stat	MW-166S DUP	12/19/2003	10-20	503046773	< 50.	< 5.0	< 5.0	<5.0	<5.0	< 5.0					Ì	5.0	130	Ž.							< 5.0	V 100
Suggestion Sug	MW-166S	3/11/2004	10-20	503237067	< 50.	< 5.0	< 5.0	<5.0	< 5.0	<50						6.0	140 < 5.								< 5.0	V 100
227 2945566 NA <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <th< td=""><td>MW-166S</td><td>6/3/2004</td><td>10-20</td><td>503493033</td><td>< 50.</td><td>< 5.0</td><td><5.0</td><td>< 5.0</td><td>< 5.0</td><td>< 50</td><td></td><td></td><td></td><td></td><td></td><td>5.0</td><td>270</td><td>52 < 5</td><td></td><td></td><td></td><td></td><td>< 5.0</td><td></td><td>< 5.0</td><td>> 100</td></th<>	MW-166S	6/3/2004	10-20	503493033	< 50.	< 5.0	<5.0	< 5.0	< 5.0	< 50						5.0	270	52 < 5					< 5.0		< 5.0	> 100
32,000, 650 64.0 61.0 62.0	MW-1678	6/1/2001	12-22	294566	VZ	<50.	0.65	<10,	<5.0	<5.0													<5.0		0.00	VA
227 SEGRODAGES CS.0	MW-167	7/17/2002	12-22	324026	6.60	0.50	65.0	0.1>	0.1>	6.15															0' >	<5.0
222 3243719 <a href="regarding-statements-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-leave-lea</td><td>MW-167S</td><td>12/04/2003</td><td>12-22</td><td>503002669</td><td><50.</td><td>< 5.0</td><td>< 5.0</td><td><5.0</td><td>< 5.0</td><td><50</td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>< 5.0</td><td>< 100</td></tr><tr><td>222 500493223 < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> <</td><td>MW-167S</td><td>3/11/2004</td><td>12-22</td><td>503237109</td><td>< 50.</td><td>< 5.0</td><td><5.0</td><td><5.0</td><td><5.0</td><td><50</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>< 5.0</td><td>× 100</td></tr><tr><td> 234567 NA < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 40</td><td>MW-167S</td><td>6/3/2004</td><td>12-22</td><td>503493223</td><td><50.</td><td>< 5.0</td><td><5.0</td><td><5.0</td><td><5.0</td><td>< 5.0</td><td></td><td></td><td></td><td></td><td></td><td>5.0</td><td>11 < 5</td><td>ľ</td><td></td><td></td><td>< 5.0</td><td>< 5.0</td><td></td><td></td><td><5.0</td><td>< 100</td></tr><tr><td> 324110 <26 <50 <50 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <</td><td>MW-1685</td><td>6/1/2001</td><td>12-22</td><td>294567</td><td>NA</td><td><50.</td><td>650</td><td><10.</td><td><5.0</td><td><5.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><5.0</td><td></td><td><5.0</td><td></td><td>0.50</td><td>NA</td></tr><tr><td> 324111 450 450 450 450 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 4</td><td>MW-168</td><td>7/18/2002</td><td>12-22</td><td>324110</td><td>0.50</td><td><5.0</td><td>650</td><td>6.15</td><td><1.0</td><td><1.0</td><td></td><td></td><td></td><td></td><td></td><td>000</td><td>45.5 <1.1</td><td>00.</td><td></td><td></td><td><1.0</td><td><1.0</td><td><1.0</td><td></td><td>0.1></td><td><5.0</td></tr><tr><td> 3240194 \$\insightarrow{0}{0} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \text{ \$\insightarrow{0}{0}} \$\ins</td><td>MW-168S Dup.</td><td>7/18/2002</td><td>12-22</td><td>324111</td><td>6.6></td><td><5.0</td><td>650</td><td>0'1></td><td><1.0</td><td><1.0</td><td></td><td></td><td>1</td><td><1.0</td><td>0.1</td><td>0.0</td><td>46 <1.1</td><td>100</td><td></td><td></td><td><1.0</td><td></td><td><1.0</td><td>ď</td><td>0.1></td><td>920</td></tr><tr><td> 324019 \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigma\$ \$\isigm</td><td>MW-169S</td><td>1/30/2002</td><td>15-25</td><td>312995</td><td>-50.</td><td><50.</td><td>650</td><td><10.</td><td><5.0</td><td><5.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><5.0</td><td><5.0</td><td><5.0</td><td></td><td>€5.0</td><td><10.</td></tr><tr><td>25 503002693 (-50) < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th> < 5.0</th></td><td>MW-169S</td><td>7/17/2002</td><td>15-25</td><td>324019</td><td><5.0</td><td><5.0</td><td>6.60</td><td>0.1></td><td><1.0</td><td><1.0</td><td></td><td></td><td></td><td>Ť</td><td></td><td></td><td></td><td></td><td></td><td></td><td><1.0</td><td></td><td></td><td></td><td>0.10</td><td>0.00</td></tr><tr><td> Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Substitute Sub</td><td>MW-169S</td><td>12/04/2003</td><td>15-25</td><td>503002693</td><td>< 50.</td><td>< 5.0</td><td><50</td><td><5.0</td><td><5.0</td><td>< 5.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>< 5.0</td><td></td><td></td><td></td><td>< 5.0</td><td>< 100</td></tr><tr><td> 23 23 23 24 24 25 25 25 25 25 25</td><td>MW-169S</td><td>3/11/2004</td><td>15-25</td><td>503237042</td><td><50.</td><td>< 5.0</td><td><50</td><td><5.0</td><td>< 5.0</td><td>< 5.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>< 5.0</td><td></td><td></td><td></td><td><5.0</td><td>× 100</td></tr><tr><td>27 313002 <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <6.0</th> <th</td><td>MW-169S</td><td>6/3/2004</td><td>15-25</td><td>503493199</td><td>< 50.</td><td>< 5.0</td><td><50</td><td><5.0</td><td>< 5.0</td><td>< 5.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Ì</td><td></td><td>< 5.0</td><td>< 5.0</td><td>< 5.0</td><td>< 5.0</td><td></td><td>< 2.0</td><td>> 100</td></tr><tr><td>27 33300</td><td>MW-170S</td><td>1/31/2002</td><td>17-27</td><td>313002</td><td><50.</td><td><50.</td><td><5.0</td><td><10.</td><td>0.5></td><td><5.0</td><td><5.0</td><td></td><td></td><td><5.0</td><td>5.0</td><td></td><td></td><td></td><td></td><td>0.50</td><td><5.0</td><td><5.0</td><td><5.0</td><td></td><td>0.00</td><td><10.</td></tr><tr><td>27: 324023 (-5.0 (-5.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (-1.0 (</td><td>MW-170S Dup.</td><td>1/31/2002</td><td>17-27</td><td>313003</td><td><50°</td><td><50,</td><td><5.0</td><td><10,</td><td><5.0</td><td><5.0</td><td><5.0</td><td></td><td></td><td>S.0 <</td><td>5.0</td><td>5.0</td><td></td><td></td><td></td><td>0.0</td><td><5.0</td><td>970</td><td>\$50</td><td></td><td>0.0</td><td><10.</td></tr><tr><td>NA NA NA NA 600 600 75 NA NA 640 5 7 70 128" na="" na<="" td=""><td>MW-170S</td><td>7/17/2002</td><td>17-27</td><td>324023</td><td>650</td><td><5.0</td><td><5.0</td><td>0.1></td><td><1.0</td><td><1.0</td><td><1.0</td><td></td><td></td><td><1.0</td><td>0.1</td><td>0.</td><td>0 <13</td><td>0 <1.0</td><td>0.10</td><td>0.15</td><td><1.0</td><td><1.0</td><td><1.0</td><td>1</td><td>0.1></td><td>0.50</td>	MW-170S	7/17/2002	17-27	324023	650	<5.0	<5.0	0.1>	<1.0	<1.0	<1.0			<1.0	0.1	0.	0 <13	0 <1.0	0.10	0.15	<1.0	<1.0	<1.0	1	0.1>	0.50
	Fier II Residential Cleans	rp Goals - Grou	ndwater		YZ.	H	Н	H	Н	009	75	NA	NA.	640	82	7	Н	H		Н	A 0.850 th	Н	NA N	NA.	NA 700	NA
											The state of the s										1					

	-	-	-	-	_	-	-		-	
anaqorqoroldəld-£,1-eiə	<5.0	<1.0	<1.0	SN	<1.0	<5.0	<5.0	NA	NA	
1,1-Dichleropropene	<5.0	<1.0	<1.0	NS	NA.	<5.0	<5.0	0.850 ^{C3}	28.6(4)	
2,2-Dichloropropane	<5.0	<1.0	0.1>	NS	NA	<5.0	65.0	¥Z	NA	
1,3-Dichloropropane	<5.0	0.1>	0.1>	NS	NA	6.0	6.0	N.	NA	
3.2-Dichloropropane	6.6	0.1>	<1.0	NS	0.1>	<5.0	<5.0	Y.	NA	
enseltsonoldsid-2,1-snert	0,50	0.1>	0.1>	SZ	0:1>	0.8	65.0	12870	2,040(2)	
cis-1,2-Dichloroethene	0.50	<1.0	<1.0	SN	<1.0	270	100	70	1,022	
anadisoroldsiG-1,1	65.0	<1.0	<1.0	NS	<1.0	6.0	9.0	7	7	
J.2-Dichloroethune	<5.0	<1.0	<1.0	NS	<1.0	<5.0	<5.0	8	31.4	
J.I.Dichloroethane	<5.0	<1.0	<1.0	SN	0.1>	0.6>	<5.0	640	10,220	
-S-ovold>lG-4,1-souvt		99	<5.0	NS	NA	99	950	NA.	NA	
Dichlorodifluoromethanc	<10	<1.0	<1.0	NS	01>	<10	<10	NA	NA	
ansznadoroldaid-4,1	<5.0	<1.0	0.1>	SN	<1.0	<5.0	<5.0	75	119.2	
ənəxnədoroldəi (L.L.)	65.0	0.1>	0.1>	NS	0.1>	<5.0	<5.0	009	NA	
3.2-Dichlorobenzene	650	0.15	0.1>	NS	0.1>	<5.0	<5.0	009	9,198	
Dibromomethane	<10.	0.1>	0.1>	NS	<10 <10	<10.	<10.	VZ.	A'N	
(HGH) sundisomordid-£,1	650	0.50	65.0	NS	<1.0	0.50	65.0	YZ.	NA	
-£-omordiCI-£,1 smqorqorold:		<5.0	<5.0	SN	01>	<50.	<50.	NA	NA	
2-Chloroethyl vinyl ether	50.	65.0	65.0	SN	6.0	-50.	<50.	YZ.	A.N.	
Lab Sample No.	312997	324021	327656	503207540	82969	253805	253806			
Serven Interval Lab Sample (feet) No.	12.32	12-22	15-25		NA	5-15	5-15	idwater (1)	Sroundwater (1)	
Date Sampled	1/30/2002	7/17/2002	9/4/2002	3/3/2004	\$/27/1993	11/23/1999	11/23/1999	Residential Cleanup Gouls - Groundwater 113	Non-Residential Cleanup Goals - Groundwater (1)	
ample No.	MW-171S	MW-171S	MW-1725	MW-173	H51-MW235 4W135 Dup)	OB-1	OB-2	Residential Cle	Non-Residentia	

Second content by the content of t	chloride 191-ketone 191-ketone							_	
No. No.	lethylene lethylene	VEK) [etp3]-etp3]-petone	MEK) MITHE MIT	мапьк)			1 10	ənəxnədoroldəlτΤ-έ,Σ,	
No. No.	NS NS NS NS NS NS NS NS NS NS NS NS NS N	NS NS NS	NS NS NS NS NS NS NS NS NS NS NS NS NS N	NS N	SSN	SN	NS	NS II NS	NS I
MA MA MA MA MA MA MA MA	NS NS NS	NS	NS	SN	SNS		NS NS	NS	NS N
NA	NA NA NA	NA	NA	NA	NA		NA NA	NA.	
NA	NA NA NA	NA NA	NA	NA	NA			NA	
NA	<20 NA <20 NA	<20	975	NA	<5.0		T	NA	
Color Colo	20 NA <20 NA	<20	070	NA	200	Ì	T	NA	
CAS CAS	<50. <10. <50. <5.0	<50.	<50.	NA	000	1	T	000	
	<50. <10. <50. <50	<50.	<50.	NA	<5.0			0.00	
Carro Carr	<50. <10. <50. <5.0	<50.	<50.	NA	200		T	<5.0	
Carro Carr	<0. <10. <50. <5.0	<50.	<50.	NA	Ì			<5.0	
Carlo Carl	<50. <10. <50. <5.0	<50.	<50.	NA	Ì			<5.0	
Color Colo	<50. <10. <50. <5.0	<50.	<50.	NA.	<50			<5.0	
C C C C C C C C C C	<12.5 <5.0 NA <12.5	<12.5	<5.0 NA	NA	<1.0		<1.0 NA	<5.0	
C C C C C C C C C C	<12.5 <5.0 NA <12.5	<12.5	AN 050	<5.0	<1.0 <1.0	c1.0 <1.0	<1.0 NA	~	
Color Colo	<10. <50 NA <10.	< 10.	AN 05 >	< 5.0	< 5.0	Ť		<5.0 <5.0 <5.0	< 5.0
Color Colo	<10 <5.0 NA <10.	< 10.	<5.0 NA <10.	< 5.0	< 5.0	Ť		< 5.0	
C C C C C C C C C C	610 AN 610	012	AN 0470	< 5.0		ľ		< 5.0	
Color Colo	NA NA	V 10	OF AN OF A	0.80		ľ	T	032	
NA	100 100 100 100	× 10.	000	N. A. A.	740		T	037	T
Name	A 10.	< 10.	A 200 A 200	N.V.	0.00		T	0000	T
NA	< 10. < 5.0 < 10. < 5.0	<10.	<5.0 < 10. < 3.0	INA	0.00	T	T	C 200	T
NA	NA NA NA	NA	NA NA NA	NA	NA		T	NA	T
NA	<200 NA <200 NA	<200	NA <200 NA	<200	<20	Ì	1	VV.	
NA	<20 NA <20 NA	070	NA <20 NA	NA	<50			NA	
\$\insightarrow{c} 6.0 \$\in	<500 NA <500 NA	<500	NA <500 NA	NA	Ì			VZ.	
\$\limins_{0.0} \circ 0 \circ	<50. <10. <50. <5.0	<50.	<10. <50. <5.0	NA				65.0	
\$\limins_{0.10} \circ \text{i} \text{c} \text{i} \text{c}	<50. <10. <50. <5.0	<50.	<10. <50. <5.0	NA	Ì	·	L3 NA	9.0	
Color Colo	<50. <10. <50. <5.0	<50.	<10, <50. <5.0	NA	-	-		<5.0	
Color Colo	<12.5 <5.0 NA <12.5	<12.5	< 0.0 NA < 12.5	NA	Ì	Ť		0.50	<1.0
C C C C C C C C C C	<12.5 <50 NA <12.5	<12.5	<50 NA <12.5	<5.0		Ì		<1.0 <5.0 <5.0	<1.0
C S C C C C C C C C	<12.5 <50 NA <12.5	<12.5	<50 NA <12.5	<5.0	Ť	Ť		<5.0	<1.0
C C C C C C C C C C	01.0 NA 0.10	210	NA NA	087		1			
CSD CSD	10 V V V V V V V V V V V V V V V V V V V	2.478	A 6.0 NTA . 10	760		T	T	037	
NA	200	770	200	NIA.	T	T	T	037	
NA	< 10.	< 10.	< 3.0 < 10.	INA	1	Ī	T	7000	Ī
NA	NA NA NA	NA	NA NA	NA	NA		ì		N. A.
NA	<10 NA <10 NA	<10	NA <10	<10	<1.0			NA	<1.0
NA	C20 NA C20 NA	020	06>	NA	<50	İ		SO NA NA	<5.0 ×
1,	200 NA	-30	200	NA	05/	ľ		AN AN ON	040
\$\limins_{0.0} \text{ \$\limins_{0.0} \$\li	ON 025 ON	2,60	100	TANK TO THE PARTY OF THE PARTY	200		I	T	0.50
<2 0 <5 0 <10, <5 0, <10, <5 0, <10, <5 0, <5 0, <10, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5 0, <5	<50. <10. <50. <50.	<50.	<50.						0.0
\$\limins_{0.50} \cdot	<50. <10. <50. <5.0	<50.	<50.		5.0 5.0	65.0 <5.0	J	<5.0 <5.0 <5.0	<.0.5>
\$5.00	1037		03/	017	750	057	AN OSA	057 057 057	050
\$5.0 \$5.0 \$5.0 \$1.0, \$2.0	× 10,	1	200	710.	2007	000	1007	0.007	0.50
<5.0 <5.0 <5.0 <10. <5.0 <10. <5.0 NA <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 ×5.0 <5.0 <5.0 <5.0 <5.0 ×5.0 <5.0 ×5.0 <5.0 ×5.0 <5.0 ×5	<10, <5.0	(3)	< 5.0	< 10.	< 5.0 < 5.0	CS.0 <5.0		<5.0 <5.0 <5.0	< 3.0
68977 44570 6.3074 91772 45 NA 1,520 1,216 6477 NA 5 5 5 NA 1,000 NA 70 200	<10. <5.0 <10. <5.0	< 10.	<5.0 <10.	NA		<5.0 <5.0		<5.0 <5.0 <5.0	< 5.0
689 ²⁷ 445 ²⁰ 630 ²⁷ 91772 45 NA 1,520 1,216 64 ²⁷ NA 5 5 5 NA 1,000 NA 70 200							THE REAL PROPERTY.		THE STREET
	6.30 ¹² 917.72 45 NA	116	72 45 NA			5 5	S NA	NA	
the same that th					1				0010

Reference 36

sundisoroldsivT-1,1,1 authoroldsivT-5,1,1	NA NA		<1.0 <1.0							C1.0 C1.0	T	0				<5.0 <5.0		5.0 5.0		< 5.0 < 5.0		0.00					Ì	C 5.0	<50 <50 <50 <50	T			5.0 <5.0		6.0 <5.0	5.0	200	The state of the state of	9.198 50.2
i.2,4-Trichlorobenzene			NA.							0.0	T		NA						65.0	1	1	NA	T			0.0°		650		Τ	T	NA.	S.0.			6.0	70		1.022
1,2,3-Trichlorobenzene	NA P		NA P				Ì	Ì	Ť	0.0	T			<5.0					970	T	NA		050			6.0		T	000	T	T		-		6.0	6.0	NA		NA
Toluene		NA N						1	T	0.10	T	0		650				<5.0	7	1	1	T	T					0.00		T					6.0	65.0	1.000		20.440
Tetrahydrofuran	NA.	0.0		4						NA																				T				NA			AX.		V.V
Тептасъюствене	NA NA		<1.0	S.0 N					T	N O O O	Τ	0			6.0 N		0.50 N				I	T	N 090		65.0 N	C5.0 N		T	0.00	T	T	Г	S.0 N			<5.0 N	4		1 705
enntreoroldzarteT-2,2,1,1	NA AN			5.0						0.15	T	0						65.0				T	I	650					000	T	T		<5.0		<5.0	5.0	8		2.7.1
nadisovoldsavieT-£,1,1,1					NA.		5.0			0.15 0.80	T									< 5.0 <			080			<5.0			0.00	T		NA <		Ì		<5.0	8		110
Styrene			NA O.						T	T	Τ	Γ			5.0						V 012	T	200		Ť		Ì	Ť	0.00	T			55.0	Ť	5.0	5.0	NA		MA
anaznani ida 1n	NA			<5.0						0.15				İ	Ì		İ													T			Ì			0	64(4)	The second	(2)000
Naphthalene										012	T																	T	0.00	T	T		Ť	Ì	<5.0	(5)	1.216		0000
(MIBK)		XX	<10	NA	NA	NA.	NA	NA	NA	NA																				I	NA	NA	NA	NA	NA	NA	1 520		6 110
4-Methyl-2-pentanone		YZ.	YZ	NA.	NA	<5.0	<5.0	<5.0	<5.0	<5.0	VN	XX	NA.	S.0	0.5>	€5.0	0.50	0.50	<5.0	< 10.	NA	NA .	050	0.50	<5.0	<5.0	<5.0	< 10.	V 5.0	NIA NIA	NA	NA.	<5.0	<5.0	<5.0	<5.0	H	1	ŀ
Paraldehyde (ATBE)	Y.	VZ.	00>	<20	<20	<50.	<50.	<50.	<50.	VI2	500	000	042	<50.	<\$0.	<50.	<50.	<50.	<50.	YZ.	OI>	250	200	<50.	<50.	<50.	<12.5	Y :	NA VIO	710	000	<20	<50.	<50.	<50.	<50.	AN		N.V.
Methyl-tert-butyl ether	NA	NA	NA	NA	NA	<10.	<10.	<10.	<10,	020	NA	NAN	NA.	<10.	<10.	<10.	<10.	<10.	<10.	< 5.0	NA	VV	017	<10.	<10.	<10,	<5.0	< 5.0	0.50	NA	NAN	VV	<10.	<10.	<10:	<10.	57		216
(MEK) Methyl-ethyl-ketone	NA	NA.	0.0	<20	970	<50.	<50.	<50.	<50.	<12.5	200	00	970	<50°	-90	<50.	<50.	<50.	<50.	<10.	01>	900	050	<50.	<50.	<50.	<12.5	< 10.	V 10.	100	200	070	<50.	<50.	<50.	<50.	57.779	Patients	0112
Methylene chloride	NA	AZ.	01>	0	65.0	<10.	<10.	<10.	<10.	0.0	950	7	950	<10	<10.	<10.	<10,	<10.	<10.	<5.0	<10	0	0.0	VIO.	<10.	<10.	<5.0	<5.0	0.50	200	0 7	999	<10°	<10.	<10.	<10.	6300	Dieta.	201100
p-Isopropyltoluene	V	K.N.	A	NA	A	<5.0	6.0	<5.0	0.50	0.10	NA.	47	47	65.0	65.0	65.0	65.0	65.0	65.0	< 5.0	YZ.	NA	NA NA	0.50	65.0	65.0	<1.0	<5.0	0.50	200	47	NA	0.50	65.0	<5.0	65.0	AASCO)		200001
Isopropylbenzene				Z	Ĭ					V 0.15	T	T	T		0.50					0			NA NA	T		<5.0			0.50	T	2 2				S.0.		6.RO ⁽²⁾	100	(2)0000
anadamobol				NA AN				<10		0.0	T	T	Z			<10.							T	<10.		<10.			× 10.	1	NA NA				<10.		42	N. C.	414
Hexachlorobutadiene				Z							NAN	T	Z						> 0.5>	0		NA			<5.0 ×	<.0.0		T	0.50	T	V 2			<5.0	> 0.5>		01	1	20.00
энопихэН-2		Z		C20		<50. ×				<12.5 K	T	I			<50.								077			<50.			× 10,	T			<50.		<50.		- VN	The state of the s	1
Lab Sample No.		NA NA	1> 62969	W5070191-14	W7020074-04 <20			-		324015 <1	Т	1.10								53			W/U200/4-06				П		503237216 <	т	80		+-					-	1
			9	W507	W702					+	,	T	t	t	-						9			+					503	200									(1)
Screen Interval	10-20	10-20	10-20	10-20	10-20	10-20	10-20	10-20	10-20	10-20	17 5.37 5	17 5.77 8	17 5-27 5	17.5-27.9	17.5-27.5	17.5-27.5	17.5-27	17.5-27.5	17.5-27.5	17.5-27.5	15-25	15-25	CZ-CZ	15.25	15-25	15-25	15-25	15-25	15-25	13-63	20-30	20-30	20-30	20-30	20-30	20-30	dustor	Name of the second	
Date Sampled	9/1992	9/1992	5/27/1993	7/14/1995	2/5/1997	11/23/1999	2/29/2000	11/8/2000	6/20/2001	7/15/2002	6/4/1903	7/14/1/005	2/4/1007	11/23/1999	11/23/1999	2/29/2000	11/8/2000	6/21/2001	7/22/2002	12/04/2003	6/4/1993	7/14/1995	11,273,1997	2/29/2000	11/8/2000	6/21/2001	7/15/2002	12/03/2003	3/11/2004	5007.000	7/14/1005	2/5/1997	11/23/1999	2/28/2000	11/8/2000	6/21/2001	The Section of Section 1 Chemical Colors	mul Ocula - cucan	
Sample No.	MW-135	MW-135	MW-135	MW-135	MW-135	MW-135	MW-135	MW-135	MW-135	MW-135	MW 145	MW.145	MW-145	MW-145	MW-145 Dup	MW-145	MW-145	MW-145	MW-145	MW-145	MW-146	MW-146	MW-146	99	MW-146	MW-146	MW-146	MW-146	MW-146	Del-win	MW-147	MW-147	MW-147	MW-147	MW-147	MW-147	orial Cha	Mill Cree	

		Reference 36	Page 170
	sundisorocidarit-2,1,1		Well Groundwater - VOCs Page 19 of 32
	snadtserochloritT-1,1,1	200 10 10 10 10 10 10 10	All Groundwi
	onsznodoroldohT-4,2,1	0.0000000000000000000000000000000000000	nitoring
	ensznedoroldoryT-2,2,1		9a - Shallow Mo
	Toluene	20,440	Table 9a.
	Tetrahydrofuran	2	
	Fetrachloroethene	~ 3 5 5 5 5 5 5 8 8 8 8 8 8 8 8 8 8 8 8 8	
3	нинізотойлатізТ-2,2,1,1	14.3 1.0	
2	nini)-1,1,1,2-Tetrachloroethan	100 100	
	Styrene	NA NA NA NA NA NA NA NA NA NA NA NA NA N	
	n-Propylbenzene	25.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	analanindas/	N	
	MIBK)	\$\frac{\delta}{\delta}	
	Paraldehyde	**************************************	
	Methyl-tert-butyl ether	N N N N N N N N N N	
	λίεθη) Αστηγί-εθηγί-λείους	89. 86. 87. 87. 88. 88. 89. 89. 89. 89. 89. 89. 89. 89	
	Methylene chloride	\$\frac{1}{2}\$\frac{1}{2}\$\$\frac	(9.000)
	-IsopropyHoluene	1.55ca	
F	suszusephidosas	10,000 1	
	Sundismobol		
	Hexachlorobutadiene		
	энопихэН-2		- 100
	Lab Sample No.	3,8 189 3,8 189 8,12912 8,12912 8,12912 8,12912 8,12912 8,12912 8,12912 2,25033 2,25033 2,25034 8,12914 8,12914 8,12914 8,12914 8,12914 8,12914 8,12914 8,12914 8,12914 8,12914 8,12914 8,12914 8,12914 8,12914 8,12914 8,12914 8,12914 8,12914 8,12917 2,2603	
	val.		
		77227002 77272003 82722003 82722003 82722003 82722004 6471993 7117204 647200 7222200 722220 7222200 722220 7222	
		SWINDERNOON SWINDERNOON	

	0	1
	>	
	14	
	rate	
		1
	puno	
	Ğ	
	Well	
	oring	
	Moni	
	Shallow	
	94	
	Table	

omatioorothiofrT-5,1,1	0.50	<5.0	<5.0	650	<5.0	950	<1.0	< 5.0	NS	NS	< 3.0	0.00	000	000	200	650	<1.0	< 5.0	< 5.0	< 5.0	<5.0	0.00	0.00	986	999	0.50	0.65	970	C1.0	0.0	CLU CCO	C3.0	650	650	< 5.0	< 5.0		0	50.2
sunthsoroldahrT-L,L,L	<5.0	65.0	65.0	65.0	65.0	65.0	<1.0 -	<.5.0	SN	NS	65.0	65.0	0.0	0.0	200	C\$0	0.1>	< 5.0	<.5.0	< 5.0	0.50	0.0	0.0	0.0	65.0	650	<5.0	65.0	0.1>	0.15	0.15	0.00	0.00	650	<5.0	< 5.0		200	9,198
1,2,4-Trichlorobenzene	NA	NA	65.0	950	<5.0	0.50	65.0	< 5.0	NS	NS	< 5.0	NA	NA	0.0	0.00	980	65.0	< 5.0	< 5.0	< 5.0	NA.	NA	NA	0.0	0.50	6.0	65.0	65.0	<5.0	0.0	0.0	0.65	0.60	C 5 0	< 5.0	< 5.0		70	1,022
anaxnadoroldaiaT-E,2,1	NA	NA	<5.0	<50	<50	050	950	< 5.0	NS	NS	< 5.0	NA	NA	000	000	050	65.0	< 5.0	< 5.0	< 5.0	NA	NA	NA	0.0	0.00	970	<5.0	0.5	0.5	0.0	0.0	650	000	050	050	< 5.0		NA	NA
Toluene	<5.0	<5.0	<50	<50	<50	<5.0	<10	< 5.0	NS	NS	0.5 >	0.50	0.00	000	000	999	×1.0	< 5.0	< 5.0	< 5.0	65.0	0.0	650	0.00	000	65.0	<5.0	<5.0	<1.0	<1.0	61.0	0000	0.60	0.00	050	<5.0		1,000	20,440
Tetrahydrofuran	NA.	VA.	NA.	NA.	NA.	4A	Y.A.	NA	SN	SN	V.V	Y.Y	NA.	NA	YA.	CA.	NA	KA	NA.	NA.	NA.	NA.	NA.	NA.	V.V	NA.	NA.	KZ.	NA.	NA.	NA	NA.	NA	NA NA	NA	NA.		ZA	Y.
Tetrachioroethene			Г	050		650						T	T	0.0	Τ	I		<5.0				0.0	T	T	200							< 5.0	000	T	050	<5.0		0	56.1
nadisovoldsarisT-£,£,1,1			650											I	0.0	0.00	0.15	<5.0	0.50	< 5.0	6.0	5.0	65.0	0.0	0.0	65.0	65.0	6.0	0.1>	0.1>	0.10	0.55	0.60	200	0.5	<5.0		9	14.3
mudisoroldamisT-5,1,1,1				050		T		< 5.0 <		NS				1	0.00			ľ	Ĭ	0	0		Ì	0.0		İ		6.0	> 0.1	0.1	0.0	5.0	0.0	200	03	8.00		2	011
styrene	Т	<50 NA	T	T	250			> 0.6>						T	0.0	T	T	T						Ť	000	T	Ì	<5.0	<1.0	<1.0	×1.0	< 5.0	0.65	0.0	5.0	5.0		NA	NA
-Propylbenzene	1			I																												0		T	0	0		6400	,020
ephthalene		NA		T	T			0 <5.0							Т	Τ	Τ	Γ			NA			I	T			€5.0	<1.0	Ť	0.15	0 <5	Ť	0 000	7 4	< 5.0		1,216	4,088
MIBIK)	NA	NA	NA	NA	NA	NA	NA	× 5.	SN	NS	NA	NA	NA	NA	NA	NA	NA	< 5.	×5.	NA	NA	NA	NA	NA	NA	(50	NA	NA	NA	NA	97	< 5.0	< 5.0	0.00	NA	NA		1,520	5,110 4
-Methyl-2-pentanone	NA	VV	037	030	250	2000	052	< 10.	SN	NS	< 5.0	<20	NA	0.0	0.0	0.00	250	× 10.	< 10.	< 5.0	NA	NA	<20	\$50	0.0	<50	<5.0	<5.0	<12.5	<12.5	<12.5	× 10	× 10.	V 10	760	< 5.0		H	H
әрАцәрүкан	000	200	OY O	-000	700	000	2124	NA.	SN	SN	< 10.	NA.	<20	<50.	<50.	200.	C12 5	NA	N	< 10.	<20	<20	NA	S0.	000	NA	<50.	<50.	NA	NA	YN.	NA	NA	NA NA	017	× 10.		NA	NA
MTRE) detph-tert-butyl ether	NAN	NA	710	100	101	V10.	250	< 5.0	NS	NS	< 5.0	NA	NA.	<10.	<10.	<10.	V40	< 5.0	< 5.0	< 5.0	NA	NA	NA	<10.	VIO.	×10.	<10.	<10.	<5.0	<5.0	90	< 5.0	< 5.0	0.65	200	650		45	715
WEK) getpλj-etpλj-petone	-1	200	09	50.0	500	50.	13.4	10.	S	S	.01	20	20	.05	.05	50.	<20°	10.	10.	10.	20	20	20	50.	50.	-20	50.	<50.	<12.5	(12.5	<12.5	< 10.	< 10.	× 10.	.00	010		917.72	\$110
dethylene chloride	T	0	T		210						0.				I		C10.		Г						<10.		<10.		<5.0					< 5.0	0.63	0.00	200	6.30	38100
-IsopropyRoluene	T									Z		V									V	V																44500	10,200
sobropylbenzene	YN.	NA.			200	200	0 17	I		NS	<5.0	NA				I	0.07		Γ	<5.0	NA	NA			0.00	T			<1.0	<1.0			Ť		250		1	689	10.20000 10
аивизашоро	YZ	VN	0 30	0.00	0,50	200	210	< 5.0	SN	NS	< 5.0	NA	N.	€5.0	65.0	0.0	7 000				Y.	NA	NA.	65.0	0.0	200	0.50			0.1>				T	000	I		NA 68	NA 10
	NA	NA.	OTO	T	T	CIO CIO	T	Τ	Г	SN	< 10.	NA.	N.			I	C10.		Ī		Y.A	KN	V.V.		<10.	I			0.50	<5.0	0.55		T	T	C 10.	T	ı	10	1 67
anaibstudeneses	N.V	NIA	0 90	000	0.00	0.00	080	C5.0	NS	NS	<5.0	2	NA	65.0	63.0	0.0	0.0	050	0.50	<5.0	KX.	47	YZ.	<5.0	0.0	7 0	0.50	0.50	0.50	0.50		<5.0	< 5.0	< 5.0	000	0.00	200	Н	NA NA
- Hexanone	200		_	T	T	Su.	T	6	Т	F	10.		-10 <20			T	O.0.				-02 <20	-14 <20	-23 <20			200	T		<12.5	<12.5	<12.5					0 × 10.	-800	NA	Z
Lab Sample	W. COTOTOL A2	SURGOODS 13	#100707 W	5099GZ	2002/9/	206306	294114	985200505	SN	NS	503492951	W5070191-01	W7020074-10	253801	260573	280690	290401	503002537	503237224	503492720	W5070191-02	W7020074-14	W7020074-23	253796	260594	200091	296405	324185	842915	842916	872601	503002545	5030025	503237182	203237190	503492670	2024240		
Screen Interval	T	T	T	2-20	5-20	2-70	0-50	5-20		5-20 N	5-20			5-20	5-20	5-20	5-20	2-70	8.20	5-20	4.5-19.5	4.5-19.5	4.5-19.5	4,5-19.5	4.5-19.5	45-195	45-195	45-19.5	4.5-19.5	4,5-19,5	4,5-19.5	4.5-19.5	4.5-19.5	4.5-19.5	4.0-19.0	4.0-19.3	4.3-19.3	ndwater ⁽¹⁾	Geometrates III
	TATA PRODUCT	0161111111	1661/07	11/23/1999	2/29/2000	11/8/2000	2/10/2/02/	12/04/2003	3/3/2004	3/11/2004	6/4/2004	7/14/1995	2/5/1997	11/23/1999	2/29/2000	11/8/2000	6/20/2001	13/13/2002	3/11/2004	6/4/2034	7/14/1995	2/6/1997	2/6/1997	11/23/1999	2/28/2000	11/8/2000	621/2001	7/22/2002	5/7/2003	5/7/2003	8/22/2003	12/03/2003	12/03/2003	3/11/2004	3/11/2004	6/4/2004	004/2004	Fier II Residential Cleanup Goals - Groundwater	The H New Besidential Cleaning Goals, Germelustee
	Sample No.	TOTAL MINI	MIW-121	MW-131	MW-151	MW-151	TOTAL AND	MW-151	MW-151	MW-151	MW-151	MW-152	MW-152	MW-152	MW-152	MW-152	MW-152	MW-132	MW-152	MW-152	MW-153	MW-153	MW-153 Dup	MW-153	MW-153	MW-155	MW-153 Dan	MW-153	MW-153	MW-153(DUP)	MW-153	MW-153	MW-153DUP	MW-153	MW-153DUP	MW-153	MW-133DUF	Il Residential Cl	Non Docident

Reference 36 (55) Page 172

annibarachianT-2,1,1	0.50	<5.0	<5.0	<50	<5.0	050	050	< 5.0	< 5.0	<50	<500	<5.0	0.50	0.00	220	<5.0	<5.0	<5.0	<5.0	<5.0	0.0	010	C 5.0	< 5.0	< 5.0	< 5.0	90	0.0	0.0	0.0	200	050	< 5.0	< 5.0		0	8 502
snantsovoldsivT-I,1,1	·65.0	65.0	65.0	050	0.65	080	9	< 5.0	< 5.0	050	<500	0.0	0.0	0.0	050	<5.0	0.50	65.0	C5.0	0.0	0.0	0.0	C 5.0	< 5.0	< 5.0	<5.0	050	020	0.50	00	7 0	050	< 5.0	< 5.0		200	0 108
anaxnadoroldairT-4,2,1	NA	NA	052	0.50	082	200	080	< 5.0	<5.0	NA	NA	0.50	99	000	200	YN	N.A.	N'N	0.50	0.50	0.0	0.0	0.00	< 5.0	< 5.0	< 5.0	47	47	0.0	0.0	0.0	080	< 5.0	<5.0		70	1.032
3n3xn3dorold3l71-£,£,1	NA	NA	950	050	050	200	000	0.50	< 5.0	NA	NA	<5.0	0.0	000	200	N/N	NA	YZ.	65.0	0.0	0.50	0.0	050	< 5.0	< 5.0	< 5.0	YZ.	N.V.	0.0	0.0	0.0	027	< 5.0	< 5.0		NA	N.
Tolucine	<5.0	<5.0	950	050	900	200	N O Y	< 5.0	< 5.0	99	000>	0.50	0.00	0.0	200	<5.0	<5.0	65.0	65.0	0.0	0.00	0.00	0.12	< 5.0	< 5.0	< 5.0	<50	65.0	0.0	65.0	0.0	030	< 5.0	< 5.0		1,000	20.440
Tetrahydrofuran	VA.	NA.	VA	Q.A.	VA.	U.A.	VA.	NA	NA	NA	NA.	NA.	NA	NA.	NA NA	NA.	NA.	NA	イン	N.A	Y.Y	NA.	KY YY	Y.Y	Y.Y	N.A.	NA	NA.	NA.	V.	NA NA	NA NA	NA.	NA.		NA	NA.
Tetrachloroethene	65.0	6.0	T	T	T	T	T			950			П	I	0.00	Т					1	0.0									000		<50	<5.0		9	1 99
nadrooroldaartrT-2,2,1,1	<5.0	0.8	082	T	T	0.0	I								I	050					650			<5.0	Г						0.00	5.0	5.0	5.0		2	14.2
nsdiseroldssrisT-2,1,1,1		1	0	Ī	T	I	T								I						× 0.0			I	< 5.0		Ì			0.60		0.00	C50	> 0.5>		9	110
Styrene	NA C		30	087		000				Γ					I	NAN								T							Ť	T	T	0.		NA	NA
n-Propylbenzene	Г	<50	Ī	Ī	T	0.00	T							1		200								< 5.0							000	000	250	455		64	1 00000
	NA	N.A.	140	080	200	0.030	000	280	< 5.0	NA	NA	<5.0	<5.0	0.00	0.0	NA	NA	NA	<5.0	<5.0	65.0	0.00	0.15	T		< 5.0			9.50	<5.0	0.00	0.00	650	<5.0			ŀ
Naphthalene	NA	Y.V	N.A	NA	NA NA	NA AN	VV.	NA V S O	< 5.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	650	NA	NA	NA	NA	NA	VV.	NA :	NA	450	NA		0 1,216	4 000
4-Methyl-2-pentanone		NA	03/	000	200	0.65	0.65	0.07	× 10.	NA	NA	€.0	<5.0	0.50	0.0	NA	NA	<20	<5.0	<5.0	<5.0	0.00	0.00	× 10	0.5 ×	< 5.0	NA	<20	<5.0	<5.0	920	0.00	× 10. ×	< 5.0	-	1,520	2 110
Paraldehyde	20	00	760	1000	700	000	000	NA NA	NA.	<200	<2,000	<50.	<50.	<50.	<50°	200	250	NA	<50.	<50.	000	<50.	NA NA	NA	< 10.	< 10.	<200	NA	<50.	<50,	<50.	, OO.	NA	< 10.		NA	
MERE) Methyl-tert-butyl ether		NA	100	100	C10.	C10.	×10.	×10.	< 5.0	NA	NA	<10.	<10.	<10.	<10.	NA.	NA	NA	<10.	<10.	<10.	<10.	0.65	650	< 5.0	< 5.0	NA	NA	<10.	<10,	<10.	×10.	000	< 5.0		45	215
(MEK) Methyl-tethyl-ketone				I	Ī	I	ı).	0	100								917.72	0110
Methylene chloride			200					CO.			630 <2,0					T									T			1 <20			<50.	00	V V	0 < 10		6.30 ²²	(Dane)
	0	0.50	710	200	C10.	V10	VIO.	C10.	<50	050		<10.	<10.	<10.	VIO.	200	050	650	<10.	<10.	<10.	<10.	<5.0	750	< 50	< 5.0	<50	<5.0	<10.	<10.	<10.	<10,	V 200	< 20 × 50		9 6	ŀ
p-FeopropyRoluene	NA	NA	200	000	0.0	0.0	0.0	0.0	052	NA.	NA.	0.50	6.6>	0.50	0.50	0.0	NA	NA	65.0	0.6>	65.0	0.50	0.15	057	450	< 5.0	NA	NA	<5.0	<5.0	<5.0	<5.0	0.00	052		445	Choose of
sobropylbenzene		42	140	200	0.0	0.0	0.0	0.0	C \$ 0	NA	NA	<5.0	65.0	€3.0	65.0	CAN NA	NA NA	NA.	0.50	<5.0	0.6≥	0.50	0.10	0.00	C 50	< 5.0	NA.	NA VA	65.0	650	<5.0	0.0	0.00	050		689	Plone of
офотейзте		V.V	NA.	210.	C10.	C10.	<10.	C10.	C 10	N.A.	N'A	<10.	<10.	<10.	<10.	CIU.	2 2	NA	<10.	<10.	<10.	<10.	0.0	710	< 10	< 10.	YZ.	Y.Y	<10.	<10,	<10,	<10'	× 10.	× 10.		Y.	
Hexachlorobutadiene	NA	470	NAV.	000	0.0	0.0	0.0	0.0	082	Y'N	N.A.	65.0	<5.0	0.50	0.50	0.0	2 2	Y'N	0.5>	0.5	€5.0	0.5	0.00	000	050	<5.0	N.A.	VZ.	65.0	<5.0	0.5>	0.00	0.50	050		10	
-Hexanone	T			T	I			<50.	T	I	0	<50.		<50.	.50.	200	200	200	<50.	<50.	<50.	<50.	<12.5	< 10.	×10.	<10.	<200	<20.	<50.	<50.	<50.	<50.	× 10.	× 10		NA	
Lab Sample No.	W5070191-12 <	V 11 YOU OU LIN			T			324191		2	W7020074-15 <	253793 <			296414 <	8								503002394			W7020074-19 <	W7020396-01 <					_	501401256	100		
	W5070	SUNDOW.	W AUG	0	266	288	29	32	5030	W4036	W702k	25	260	28	29	35	W203	W702	25	26	280	29	32	5036	4000	5033	W702	W702	26	28	29	32	5034	5014	1		
Screen Interval	5-20	6 30	3-20	2-20	5-20	5-20	5-20	5-20	5-20	14.20	14-29	14-29	14-29	14-29	14-29	14-29	0.00	5-20	5-20	5-20	5-20	5-20	5-20	2-20	00-5	5-20	5-20	5-20	5-20	5-20	5-20	5-20	5-20	8.20	The state of the s	ndwater (1)	
Date Samulail	7/14/1905	COUNTRY	1661767	11/23/1999	2/28/2000	11/8/2000	6/21/2001	7/22/2002	3/11/2003	5001/11/0	2/6/1997	11/23/1999	2/28/2000	11/8/2000	6/21/2001	7/19/2002	28611007	2/6/1997	11/23/1999	2/29/2000	11/8/2000	6/20/2001	7/18/2002	2704/2003	5011/2004	6/11/2004	2/6/1997	2/26/1997	2/29/2000	11/8/2000	6/21/2001	7/19/2002	12/04/2003	6/47/004	-	ier II Residential Cleanup Goals - Groundwater	
Samuel No.	MW-154	W ica	MW-154	MW-134	MW-154	W-154	MW-154	MW-154	W-139	07.155	MW-155	MW-155	MW-155	W-155	MW-155	MW-155	MAN 156	MW-156 Dun	MW-156	W-156	MW-156	MW-156	MW-156	MW-156	MW-120	WW-156DUP	MW-157	MW-157 Dap.	MW-157	MW-157	MW-157	MW-157	MW-157	MW-157	The state of the s	sidential Clea	

		Reference 36	Page 173
	annthaerothalrT-5,1,1	8	Shallow Monitoring Well Ground water - VOCs Page 22 of 32
	snadtsovoldolvT-1,1,1	\$ 250 \$ 250	ell Ground y
	onsznodoroldoivT-P,C,I	2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	onitoring W
	anaxnadoroldahrT-E,S,1	\$6666666666666666666666666666666666666	Shallow M
	Toluene	\$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50	Table 9a -
	nernhorbydernsT	\(\frac{1}{2}\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\	
	Tetrachloroethene	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	
	onndisoroldsarts-L.2,2,1,1	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	19 20
	anndiaoreidamisT-2,1,1,1	\$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50	1011
	энэхбүд	650 650 650 650 650 650 650 650	
	n-Propylbenzene	\$5.0 \$5.0 \$5.0 \$5.0 \$5.0 \$5.0 \$5.0 \$5.0	
	Уарћіћајспе	NA NA NA NA NA NA NA NA NA NA NA NA NA N	
	t-Methyl-2-pentanone	\$5.50 \$5.50	1:38
10. 202FL	эрлирордар	NA NA NA NA NA NA NA NA NA NA NA NA NA N	
A Project A	MLRE) Aethyl-tert-butyl ether	45	
REMANDIA Project No.	(MEK) Metph-etph-retone	2.5 2.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3	
	Methylene chloride	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12 10 10 10
	-Isopropyltoluene	C C C C C C C C C C	1.4400
		9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
	eubzupenseue	C C C C C C C C C C	
	fexachiorobutadiene deomethane		
	-Hexanone	4 4 4 4 4 4 4 4 4 4 5 5 5 4 4 4 4 5 5 5 4 4 4 4 5 5 5 6 4 4 4 4	
	1000	888888888888888888888888888888888888888	
	Lab Sample	28/05/6 294415 324156 266383 28/05/8 29/417 29/417 28/05/8 29/417 32/402 29/417 28/002/9 29/410 32/410 29/410 29/410 29/410 32/4	
	Screen Interval	14-29 14-29 14-29 14-29 14-29 NA NA NA NA NA 3-13 3-13 3-13 3-13 3-13 3-13 3-13 3-1	
	Date Samueled	1/4/2000 1/4/2000	
	Samula V.	MW-158 MW-158 MW-159 MW-159 MW-160 MW-160 MW-160 MW-160 MW-160 MW-160 MW-161 MW-161 MW-161 MW-161 MW-161 MW-161 MW-161 MW-161 MW-161 MW-161 MW-161 MW-161 MW-161 MW-161 MW-161 MW-162 MW-163 MW-163 MW-163 MW-164 MW-164 MW-164 MW-164 MW-164 MW-164 MW-164 MW-164 MW-165 MW-165 MW-165 MW-165 MW-165 MW-165 MW-165 MW-165 MW-165 MW-165 MW-164	

M	
155	
123	
175	50
	.52
150	
128	
- 10	
18	
10	
-	
100	
3	
0.0	
10	
12	
18	
2	
28	
3	
15	
70	
12	
S	
0	
盃	
-22	
200	

onntheoroldori-1,1,1	<5.0	<5.0	<1.0	<5.0	< 5.0	< 5.0	<5.0	<1.0	<5.0	< 5.0	< 5.0	< 5.0	<5.0	<1.0	< 5.0	< 5.0	< 5.0	<5.0	<1.0	<1.0	<5.0	<1.0	< 5.0	< 5.0	< 5.0	65.0	<5.0	<1.0	5		502
onsultsorothairT-L,L,L	<5.0	65.0	0.1>	<5.0	<5.0	<5.0	6.6	0.1>	<5.0	<5.0	<5.0	< 5.0	6.50	0" >	<5.0	<5.0	<5.0	6.50	0.1>	0.1>	650	0.1>	< 5.0	<5.0	< 5.0	6,0	6.6>	0.1>	200		9,198
sussensdoroldor/T-4,2,1	<5.0		6.6	< 5.0		< 5.0				< 5.0		< 5.0				< 5.0		65.0		6.0			< 5.0	< 5.0	< 5.0	<5.0	6.0	0.65	70		1.022
anaxnadoroldairT-£,£,1	65.0	65.0	65.0	< 5.0	< 5.0	< 5.0	<5.0	<5.0	< 5.0	< 5.0		< 5.0		<5.0	< 5.0	< 5.0	< 5.0	<5.0	6.0	<5.0	65.0	6.0	< 5.0	< 5.0	<5.0	65.0	65.0	6.0	N.		N.N.
Toluene	6.0	65.0	<1.0	< 5.0	< 5.0	<5.0	9.5	<1.0	< 5.0	< 5.0	< 5.0	<5.0	0.5>	<1.0	< 5.0	< 5.0	< 5.0	65.0	<1.0	<1.0	<5.0	<1.0	< 5.0	<5.0	< 5.0	65.0	65.0	<1.0	1.000	-	20,440
Тетгаћудгобигап	NA	N.A.	Y.A	N.A.	NA	NA	NA.	NA	NA	NA.	NA.	NA.	NA.	NA.	NA	NA.	NA.	NA	NA.	NA.	NA.	NA	NA	NA	VV	NA	NA	NA.	NA.		NA
Tetrachloroethene		П		<.5.0		< 5.0	П		<5.0			< 5.0	6.0				< 5.0		49.8	52.7	<5.0				<.5.0	9	<5.0				1 95
1,1,2,2-Tetrachloroethane	<5.0	5.0	(1.0	< 5.0	< 5.0	< 5.0	<5.0	<1.0	< 5.0	< 5.0	< 5.0	< 5.0	<5.0	<1.0	< 5.0	< 5.0	< 5.0	<5.0	<1.0	<1.0	<5.0	<1.0	< 5.0	< 5.0	< 5.0	5.0	5.0	0.15	8		143
ensalisoroldaentsT-2,1,1,1		5.0	1.0	< 5.0	-	< 5.0	0.0		< 5.0			< 5.0	<5.0					S.0 ×							< 5.0	5.0	5.0	0.0	8		110
Styrene		S.0 <	<1.0 ×		<5.0	< 5.0	<5.0 <				Ĩ		<5.0	<1.0						<1.0	0.6				< 5.0	5.0	5.0	1.0	VZ.		VV
n-Propylbenzene			<1.0 <			< 5.0	0.50			< 5.0	< 5.0								0.15							65.0	0	0.	6400		1 0000001
Suphthalene					< 5.0						< 5.0					<5.0								<5.0	× ×	4	4	N C	1216		4.088
(МВК) +-Мейуу-2-репіянопе		KZ.				NA																			Z	Z	Z	Z	1.520		6110
Paraldehyde	0	<5.0	5 <5.0		< 10.			5 <5.0					<5.0					<5.0					< 10.		< 5.0		0.00		NA		MA
(MTBE)	<50	000	<12.5	NA	NA		<50.		< 10.			< 10.						<50.	<12	<12	<50		NA			<50.			45	-	316
Methyl-tert-butyl ether	NA.	NA	0.50	< 5.0	< 5.0	< 5.0	NA.	65.0	< 5.0	< 5.0	< 5.0	< 5.0	NA	<5.0	< 5.0	<5.0	< 5.0	NA	<5.0	65.0	<10.	65.0	< 5.0	< 5.0	< 5.0	<10.	<10.	<5.0	H		-
Methyl-ethyl-ketone (MEK)	<50.	<50.	<12.5	< 10.	< 10.	< 10.	<50.	<12.5	< 10.	< 10.	< 10.	< 10.	<50.	<12.5	< 10.	< 10.	< 10.	<50.	<12.5	<12.5	<50.	<12.5	< 10.	< 10.	< 10.	<50,	<50.	<12.5	917.72		6110
Methylene chloride	<10.	<10.	<5.0	< 5.0	< 5.0	< 5.0	<10.	<5.0	< 5.0	< 5.0	< 5.0	< 5.0	<10.	0.5	< 5.0	< 5.0	< 5.0	<10.	<5.0	<5.0	<10.	<5.0	< 5.0	< 5.0	< 5.0	<10.	<10.	0.50	6.30		2010
b-reobropytolucne		<5.0	1.0	< 5.0	< 5.0	< 5.0	<5.0	<1.0	< 5.0	< 5.0	< 5.0	< 5.0	<5.0	<1.0	< 5.0	< 5.0	< 5.0	<5.0	<1.0	<1.0	<5.0	<1.0	< 5.0	< 5.0	< 5.0	<5.0	<5.0	0.1	44500		Character on
probrobylpenzene			×1.0		< 5.0 <	< 5.0	> 0'\$>	×1.0	< 5.0 <	> 5.0	< 5.0	< 5.0	> 0.6>	> 0.1>	< 5.0	< 5.0	< 5.0	> 0.5>			<5.0			< 5.0		> 0.6>	< 5.0	<1.0	0.089		10 3000
lodomethane		-	< 5.0	< 10.	< 10.	< 10.	NA AN	<5.0	< 10. <	< 10.	< 10.	< 10.	NA <	<5.0	< 10.	< 10,	< 10,	-		<5.0 <	<10.		Ü	< 10.	< 10.	<10.	<10.	> 0.5	YZ.		NA
Hexachlorobutadiene		<5.0 N	<5.0 ×	<5.0	< 5.0	< 5.0	<5.0 N	< .0.2>		< 5.0		> 0.5>	<5.0 IN	<5.0	< 5.0	< 5.0	< 5.0	<5.0 N	<5.0	<5.0	<5.0			< 5.0	< 5.0	<5:0	<5.0	<5.0	101		26.7
ononex9H-Z			<12.5		< 10,	< 10.	<50.	<12.5		< 10.	-	<10.		<12.5	< 10.	< 10.	< 10.			<12.5					< 10.		<50.	<12.5	42		MA
Lab Sample No.	294563 <5		324108 <1	49		9				503046773 <		503493033 <		324026 <1	J.	503237109 <	60			324111 <1	П				6		Ü	324023 <			-
	294	294	324	5030	5032	5034	294	324	5030	5030	5032	5034	294	324	5030	5032	5034	294	324	324	312	324	5030	5032	5034	313	313	324			
Screen Interval	10-20	10-20	10.20	10-20	10-20	10-20	10-20	10-20	10-20	10-20	10-20	10-20	12-22	12-22	12-22	12-22	12-22	12-22	12-22	12-22	15-25	15-25	15-25	15-25	15-25	17-27	17-27	17-27	dwater W		(1) and distribution (1)
Date Sampled	6/1/2001	6/1/2001	7/18/2002	12/05/2003	3/11/2004	6/3/2004	1002/1/9	7/18/2002	12/19/2003	12/19/2003	3/11/2004	6/3/2004	1007/1/9	7/17/2002	12/04/2003	3/11/2004	6/3/2004	1002/1/9	7/18/2002	7/18/2002	1/30/2002	7/17/2002	12/04/2003	3/11/2004	6/3/2004	1/31/2002	1/31/2002	7/17/2002	un Goals - Grou		Tonnin Conte
Sample No.	MW-165S	MW-165S Dup.	MW-165	MW-165S	MW-165S	MW-165S	WW-166S	MW-166	MW-166S	MW-166S DUP	MW-166S	MW-166S	MW-167S	MW-167	MW-167S	MW-167S	MW-167S	MW-168S	MW-168	MW-168S Dup.	MW-169S	MW-169S	WW-169S	WW-169S	MW-169S	MW-170S	MW-170S Dup.	MW-170S	ier II Residential Cleanup Goals - Groundwater VI		ive Il Non-Decidential Cleans Goals - Geomodarates

Reference 36 Page 175 Page 24 of 32 Page 24 of 32 Page 34

sundisoroldsirT-1,1,1	0.5	<1.0	<1.0	NS	0.1>	0.5>	0.50	200	010	
susxnadoroldahT-4,2,1	<5.0	6.0	<5.0	NS	NA	<5.0	<5.0	10	1.002	2000
anaxnadoroldaiaT-E,£,t			0.5>	П		<5.0		NA	NA	W
Toluene			<1.0			<50		000'1	30.440	044/02
Теітаһудгоїнтап		,				NA.		AN.	42	W
Tetrachlomethene			<1.0 NA	П		C5.0 N	0	*	1 33	30.1
onsdisoroldsantsT-2,2,1,1	65.0		(1.0			<5.0		5.	17.2	84.0
onnitisoroldsurisT-2,1,1,1			<1.0			> 0.5>		5	110	011
Styrene			<1.0	Н		<5.0		NA	17	W
u-bropylbenzene			<1.0			> 0.6>		64.21	1.000(2)	1000
Suphthalene			NA AN			NA <		1,216	350 7	4,000
4-Methyl-2-pentanone (MBK)	<5.0 P		(5.0			<5.0		1,520	STID	3,410
Рагајдећуде		2	<12.5			<50.		NA NA	*2	NA
Methyl-tert-butyl ether	<10.		<5.0			<10.		45	215	113
Methyl-ethyl-ketone			<12.5		1			917.72	6110	2,110
Methylene chloride			5.0			<10. <50.		6.301.0	(D) ac	391
p-Isopropyltoluene								445'''	(2)000 01	0,200
[zob.obλ]penzene			0.1>			0.65.0		12589	(2)000,01	4
June			6.0 <1.0			0. <5.0	-	NA		NA IN
Hexachiorobunatiene	<5.0 <10.		<5.0		\ \ \	<5.0 <10.		01	36.7	30.7
2-Hexanone	<50.	<12.5	<12.5	NS SN	<10 N		S0. K	NA	17.2	NA
Sample No.			327656 <	03207540 N		253805 <				
erval Lab				503	9		-		0)	
	12-23	12-22	15-25		NA	5-15	5-15	indwater (1)	1	Groundwate
Date Sampled	1/30/2002	7/17/2002	9/4/2002	3/3/2004	\$/27/1993	11/23/1999	11/23/1999	Sidential Cleanup Goals - Groundwater	Colonia Cont.	on-Residential Cicanap Goals - Groundwater
ple No.	V-171S	V-171S	V-172S	W-173	I-MW235 135 Dup))B-1)B-2	sidential Cle	D. Carre	30-Residentia

Xylenes, (Total)	ZSZ	SZ	4Z	NA.	080	0 40	0 40	0.50	0.50	65.0	<5.0	65.0	0.1>	0.10	< 10.	< 10.	× 10.	210	V 10	NA	970	0.650	<120	0.50	0.50	0.0	207	0.15	< 10.	< 10.	< 10.	NA.	0.1>	0.60	0.50	0.0	01 ×	< 10.	< 10.	10.000		204,400	
Vinyl chloride	NS	SN	<100	NA	012	010	200	080	050	<2.0	<2.0	<2.0	0.1>	010	< 2.0	< 2.0	0.2.5	250	220	1.200	<100	009	<250	580	1	077	010	<1.0	< 2.0	< 2.0	< 2.0	<10	8.3	<10	<10	1	1	< 2.0	< 2.0	2		01	
Уіпуі всебабе	SN	NS	NA	NA.	900	00	210	<10.	<10.	<10.	<10.	<10.	0.50	0.0	< 10.	< 10.	× 10.	× 10.	< 10.	NA	<200	070	00€>	<10.	<10.	C10,	207	650	< 10.	< 10.	< 10.	NA	<10	070	000	<10.	< 10	< 10.	< 10.	4Z		AN	
isxnədlydismirT-2,5,1	SZ	SN	×Z	N. N.	NA.	200	0 80	0.50	65.0	65.0	65.0	65.0	0.1>	0.15	< 5.0	< 5.0	0.60	000	650	NA.	Y.	VZ.	NA	0.0	0.0	0.0	0 0	0.15	< 5.0	< 5.0	<5.0	NA.	NA.	NA	NA	0.0	050	< 5.0	< 5.0	13.74		5,110 ⁽²⁾	
iəsnədiyiləmirT-4,2,1	NS	SN	YZ.	NA.	Y.Y	NA	0.50	0.50	65.0	0.50	65.0	<5.0	0.1>	0.10	< 5.0	< 5.0	000	23.0	650	NA	NA.	NA	NA	<5.0	0.50	0.0	010	0.1>	< 5.0	<5.0	< 5.0	NA	NA	NA	NA	0.0	650	<5.0	< 5.0	13.940		5,110	
naqorqorolfahrT-E,2,1	NS	NS	NA	NA	NA	NA	080	980	65.0	65.0	65.0	65.0	65.0	6.0	< 5.0	< 5.0	0.65	6.60	0.62	NA	<200	NA	NA	0.50	650	0.0	200	65.0	< 5.0	< 5.0	< 5.0	NA	<10	NA	NA	0.0	C 5.0	< 5.0	< 5.0	Y.		NA	
Тесілогопиотопнати	NS	NS	NA	NA	NA	NA	050	052	<5.0	<5.0	<5.0	65.0	<1.0	c1.0	<5.0	< 5.0	0.00	25.00	650	NA	420	NA	NA	65.0	0.0	0.00	010	CL0	< 5.0	< 5.0	< 5.0	NA	<1.0	NA	NA	0.00	052	< 5.0	< 5.0	1.380		30,700(2)	
Trichloroethene	1,000	300	880	1,600	1 800	810	0000	1,100	096	1,100	540	650	303	450	220	240	230	400	290	280	1,900	1,700	15,000	270	2,900	ALL OF THE PERSON NAMED IN COLUMN 1	0.02	40.9	23		1.2	47	24	23	53	310	050	5.3	<5.0	5		260	
Lab Sample No.	503207557	503207565	NA	NA.	W5070101-13	W7000074-01	243788	253812	260586	280650	324157	324158	842918	872595	503002107	503002115	503237240	503403030	503492029	NA	69681	WS070191-09	W7020074-02	253791	260589	324190	877560K	872597	503002123	503237166	503492647	NA	08969	W5090134-01	W7020074-03	253798					The second		mor Gottl
Screen Interval (feet)	10.5-15.5	12-17	7-17	7.17	7.17	7.17	7.17	7-17	7-17	7-17	7-17	7-17	7-17	7-17	7-17	7-17	7-17	4-17	72.17	10.20	10-20	10-20	10-20	10-20	10-20	10-20	10.20	10-20	10-20	10-20	10-20	8-18	8-18	8-18	8-18	00 00	8.18	9-10	8-18	dwater	TANK TANK	roundwater (11)	on Residential Clea
Date Sampled	3/3/2004	3/3/2004	3/28/1994	1001/5/01	3001/71/2	2/5/1007	11/23/1900	11/23/1909	2/29/2000	11/8/2000	7/19/2002	7/19/2002	5/7/2003	8/22/2003	12/03/2003	12/03/2003	3/11/2004	2/11/2004	6/4/2004	0/1007	5/27/1993	7/14/1995	2/5/1997	11/23/1999	2/28/2000	1122/2002	SUDDIVINOS	8/22/2003	12/03/2003	3/11/2004	6/4/2004	9/1992	5/27/1993	661/11/6	2/5/1997	11/23/1999	12/04/2/003	3/11/2004	6/4/2004	Ser II Residential Cleanup Goals - Groundwater		Tier II Non-Residential Cleanup Goals - Groundwater	eds the VRP Tier II N
Sample No.	IW-1	IW-2	MW-10-1	MW-10-1	VW-10-1	MW-10-1	VW-10-1	MW-10-1 Dan	MW-10-1	MW-10-1	MW-10-1	MW-10-1 Dup.	MW-10-1	MW-10-1	MW-10-1R	MW-10-1RDUP	MWIO-IR	AND THE DE	MW.101RESTE	MW.132	MW-132	MW-132	MW-132	MW-132	MW-132	MW-132	MW-132	MW-132DUP	MW-132	MW-132	MW-132	MW-133	MW-133	MW-133	MW-133	MW-133	MW-133P	MW-133R	MW-133R	II Residential Clea		II Non-Residential	ested compound exce

Xylenes, (Total)	NA	NA	0.1>	650	<5.0	6,65	<5.0	<5.0	<5.0	<1.0	< 10.	\$	12 <5.0	<5.0	28 <5.0	31 <5.0	E <5.0		170 <5.0	W <5.0	14 < 10.	<1.0	0.50	<5.0	<5.0	250	00	200	< 10.	< 10.	< 10.	42<1.0	<5.0	<5.0	<5.0	200	000	<5.0	10,000		204,400
Vinyl chloride	<10	<10	10	<10	<10	<5.0	<5.0	<2.0	<2.0	<1.0	< 2.0	<20		<10			36 E					Q	<10	<10	<5.0	0.50	0.25	0.25	< 2.0	< 2.0	< 2.0		<10	<10	0.50	0.0	42.0	42.0	67		10
Vinyl acetate	NA	NA	01>	<20	<20	<10.	<10.	<10.	<10.	<5.0	< 10.	05>	<20	<20	<10.	<10.	<10.	<10.	<10.	<10.	< 10.	<10	<20	<20	<10.	<10.	<10.	200	< 10.	< 10.	< 10.	<10	<20	<20	<10.	<10.	<10.	<10.	NA		NA
nəxnədiydiəmirT-2,£,1	NA.	A.N	VZ.	Z.	A.Z	65.0	65.0	65.0	<5.0	0.1>	<5.0	NA	NA	NA	<5.0	6.0	6.0	65.0	<5.0	6.0	<5.0	NA	NA	NA	<5.0	0.50	6.50	000	<5.0	<5.0	<5.0	NA	NA.	NA	<5.0	<5.0	<5.0	<5.0	13.70		5,110**
nsxnsdiydləmivT-Þ,£,l	NA	NA	NA	NA	NA	6.0	6.0	6.65	65.0	0.1>	<5.0	NA	NA	NA	65.0	65.0	65.0	<5.0	<5.0	<5.0	< 5.0	NA	NA	NA	65.0	6.0	000	007	< 5.0	<5.0	<5.0	NA	NA	NA	<5.0	0.50	0.50	65.0	13.70		5,110**
nnqorqoroldəlaT-E,S,	NA	N'A	<10	NA	NA.	€5.0	6.0	65.0	<5.0	65.0	<5.0	950	VV	NA	0.50	65.0	65.0	<5.0	6.0	0.5>	< 5.0	<10	NA.	NA	0.50	650	000	200	<5.0	<5.0	<.5.0	<10	NA	NA	0.50	0.00	0.50	<5.0	NA		NA
Trichlorofluoromethun		NA	0.1>	NA	NA	<5.0	65.0	6.0	65.0	0.1>	< 5.0	9	NA	NA	65.0	65.0	6.0	<5.0	6.0	65.0	< 5.0	0.1>	NA	NA	€5.0	0.0	0.0	0.0	<5.0	<5.0	<5.0	0.1>	NA	NA.	0.0	0.0	0.0	0.0	1,3804		30,700**
Trichloroethene	0	5	0.1>	<5.0	<5.0	6.50	6.50	65.0	<5.0	0.1>	<5.0	8.6	5.6	43	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	83	33	4.5	69	0	70	20 0	9	98	999	39	65.0	100	0.5	0.0	25.0	970	5		260
Lab Sample No.		Ť		41-		253802	260574		296393		61	69941	W5070191-10	W7020074-05		ris i	260597				53	69942	W5070191-11	W7020074-06	253800	260572	280684	414047	503002461	503237216	503492738	69943	7.0	07			П	296409		THE REAL PROPERTY.	
Scren Interval	10-20	10-20	10-20	10-20	10-20	10-20	10-20	10-20	10-20	10-20	10-20	17.5-27.5	17.5-27.5	17.5-27.5	17.5-27.5	17,5-27.5	17,5-27.5	17.5-27.5	17,5-27,5	17.5-27.5	17.5-27.5	15-25	15-25	15-25	15-25	15-25	15-25	15-25	15.25	15-25	15-25	20-30	20-30	20-30	20-30	20-30	20-30	20-30	dwater (1)		iroundwater
Date Sampled	9/1992	9/1992	5/27/1993	7/14/1995	2/5/1997	11/23/1999	2/29/2000	11/8/2000	6/20/2001	7/15/2002	12/04/2003	6/4/1993	7/14/1995	2/5/1997	11/23/1999	11/23/1999	2/29/2000	11/8/2000	6/21/2001	7/22/2002	12/04/2003	6/4/1993	7/14/1995	2/5/1997	11/23/1999	2/29/2000	11/8/2000	2/15/2001	12/03/2003	3/11/2004	6/4/2004	6/4/1993	7/14/1995	2/5/1997	11/23/1999	2/28/2000	11/8/2000	6/21/2001	nup Goals - Groun		Cleanup Goals - C
Sample No.	MW-135	MW-135	MW-135	MW-135	MW-135	MW-135	MW-135	MW-135	MW-135	MW-135	MW-135	MW-145	MW-145	MW-145	MW-145	MW-145 Dup	MW-145	MW-145	MW-145	MW-145	MW-145	MW-146	MW-146	MW-146	MW-146	MW-146	MW-146	MW-140	MW-146	MW-146	MW-146	MW-147	MW-147	MW-147	MW-147	MW-147	MW-147	MW-147	Tier II Residential Cleanup Goals - Groundwater 111		Tier II Non-Residential Cleanup Goals - Groundwater

Xylenes, (Tolnl)	65.0	<1.0	<1.0	×10.	< 10.	< 10.	082	2 <5.0	65.0	200 <5.0	0.50	270 <5.0	35 <5.0	0.50	50 <5.0	0.50	0.50	<1.0	<1.0	< 10.	< 10.	6 < 10.	0.5>	65.0	<5.0	65.0	65.0	65.0	0.50	<1.0	<1.0	< 10.	<10.	<10.	10,000		204,400
Vinyl chloride	2.0	0.1>	0.1>	<2.0	<2.0	< 2.0	490	6	OI>	20	18	27	3	3	υ.	90	<2.0	0.1>	0.1>	< 2.0	< 2.0	2	01>	<10	<5.0	<5.0	0.70	<2.0	<2.0	0.1>	0.1>	< 2.0	< 2.0	< 2.0	2		10
Vinyi acetate	<10.	<5.0	<5.0	< 10.	< 10.	< 10.	<800	<20	<20	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<5.0	<5.0	<10.	<10.	<10.	<20	<20	<10.	<10.	<10.	<10.	<10.	<5.0	65.0	< 10.	<10.	<10.	AN		NA
ənəxnədlydəmirT-2,C,1	<5.0	<1.0	<1.0	< 5.0	< 5.0	< 5.0	NA	NA	NA	<5.0	6.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<1.0	<1.0	< 5.0	< 5.0	< 5.0	NA	NA	<5.0	0.65	<5.0	<5.0	<5.0	<1.0	<1.0	< 5.0	< 5.0	< 5.0	13.70		5,110(4) 5,110(2)
ənəxnədiydəmirT-4,5,1	<5.0	<1.0	<1.0	< 5.0	< 5.0	< 5.0	NA.	NA.	NA	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	0.1>	<1.0	< 5.0	< 5.0	< 5.0	NA	NA.	<5.0	<5.0	<5.0	<5.0	<5.0	<1.0	<1.0	< 5.0	< 5.0	< 5.0	1374		5,110(4)
onnqorqoroldəirT-£,£,1	0.6>	<5.0	<5.0	< 5.0	< 5.0	< 5.0	<800	NA	NA	<5.0	0.5>	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	0.50	0.50	< 5.0	< 5.0	< 5.0	NA	NA.	<5.0	<5.0	<5.0	<5.0	<5.0	€5.0	€5.0	< 5.0	< 5.0	< 5.0	NA		NA
nadzəmoroufloroldəirT	650	0.1>	0.1>	< 5.0	< 5.0	< 5.0	08>	NA	NA		<5.0	99	<50	<5.0		<5.0	0/5>	<1.0	<1.0	< 5.0	< 5.0	< 5.0	NA	NA	<5.0	<5.0	<5.0	<50	<5.0	<1.0	<1.0	< 5.0	< 5.0	< 5.0	1.380		30,700
Trichloroethene	<5.0	<1.0	<1.0	< 5.0	< 5.0	< 5.0	4,960	410	<5.0	310	360	400	190	160	340	360	170	86.8	80.3	100	20	9	59	86	130	120	86	200	30	17.1	56.1			2	41		260
Lab Sample No.	324189	842912	872598	503002578	503237158	503492597	69944	WS070191-07	W7020074-08	253792	260583	260568	280686	280687	256407	296408	324188	842914	872599	503002479	503237174	503492654	WS070229-01	W7020074-09	253803	260575	280688	296390	324159	842917	872600	503002529	503237232	503492753			
Screen Interval	20-30	20-30	20-30	20-30	20-30	20-30	10.5-25.5	10.5-25.5	10.5-25.5	10.5-25.5	10.5-25.5	10.5-25.5	10.5-25.5	10.5-25.5	10.5-25.5	10.5-25.5	10.5-25.5	10.5-25.5	10.5-25.5	10.5-25.5	10,5-25.5	10.5-25.5	4-19	4-19	4.19	4-19	4.19	4.19	4-19	4.19	4-19	4.19	4.19	4-19	adwater (1)	The state of the s	Groundwater (15
Date Sampled	7/22/2002	5/7/2003	8/22/2003	12/03/2003	3/11/2004	6/4/2/004	6/4/1993	7/14/1995	2/5/1997	11/23/1999	2/28/2000	2/28/2000	11/8/2000	11/8/2000	6/21/2001	6/21/2001	7/22/2002	5/7/2003	8/22/2003	12/03/2003	3/11/2004	6/4/2004	7/17/1995	2/5/1997	11/23/1999	2/29/2000	11/8/2000	6/20/2001	7/19/2002	5/7/2003	8/22/2003	12/03/2003	3/11/2004	6/4/2004	Ser II Residential Cleanup Goals - Groundwater (1)	with Collection or other	Fier II Non-Residential Cleanup Goals - Groundwater
Sample No.	MW-147A	MW-147A	MW-147A	MW-147A	MW-147A	MW-147A	MW-148	MW-148	MW-148	MW-148	MW-148	MW-148 Dup.	MW-148	MW-148 Dup.	MW-148	MW-148 Dup.	MW-148	MW-148	MW-148	MW-148	MW-148	MW-148	MW-150	MW-150	MW-150	MW-150	MW-150	MW-150	MW-150	MW-150	MW-150	MW-150	MW-150	MW-150	I Residential Cle	A LANCAS CONTRACTOR OF THE PARTY OF THE PART	I Non-Residentia

100	2	NA	13.7"	13.7"	NA NA	1,380**	5		Ter II Residential Cleanup Goals - Groundwater ¹¹¹	ndwa
V 10.	< 2.0	< 10.	< 5.0	< 5.0	< 5.0	< 5.0	630	503492696	5034	
< 10.	< 2.0	< 10.	< 5.0	< 5.0	< 5.0	< 5.0	620	503492670	503	4.5.19.5 5034
< 10.	< 2.0	< 10.	< 5.0	< 5.0	< 5.0	< 5.0	450	503237190	503	
× 10.	< 2.0	< 10.	< 5.0	< 5.0	<5.0		440	503237182	503	45.195 503
V 10.	< 2.0	< 10.	< 5.0	× 5.0	< 5.0	V 5.0	420	503002545	503	+
0.15		-S.0	<1.0	<1.0	<5.0		707	872601	87.	
<1.0	1.1	<5.0	<1.0	<1.0	<5.0	0.1>	381	842916	842	
<1.0	CHI CHI	<5.0	<1.0	<1.0	<5.0	<1.0	384	915	842915	
0.50	69	<10.	650	0.50	6.0	<5.0	290	T	324	
250	070	<10.	900	000	050	7.00	050	T	504057	45.10 5 2504
0.0	2.0	<10.	000	0.00	000	0.50	150	-	280691	+
0.50	<5.0	<10.	9.0	0.50	<5.0	<5.0	<5.0		260594	
950	67	<10.	<5.0	<5.0	<5.0	<5.0	330		253796	
5.0	<10	98	NA	NA	NA	NA	5.0	4-14	W7020074-23	4.5-19.5 W702007
0.0	72	8	NA	NA	NA	VY.	570	91-02	W5070191-02	1
< 10.	< 2.0	< 10.	< 5.0	< 5.0	< 5.0	< 5.0	36	503492720	50349	
< 10.	< 2.0	< 10.	< 5.0	< 5.0	< 5.0	< 5.0	79	503237224	5032	5-20 5032
V 10	<2.0	< 10. < 10.	×5.0	< 5.0	000	0.15 < 5.0	110	324016	503	
65.0	0.0	<10.	<5.0	0/5>	0.5>	<5.0	240	296401	25	5.20 25
<5.0	0.2	<10.	<5.0	<5.0	<5.0	<5.0	180	280690	28	
<5.0	65.0	<10.	0.50	<5.0	<5.0	<5.0	180	260573	26	
65.0	6.0	<10.	<5.0	<5.0	<5.0	0.50	110	253801	25.	t
<5.0	c10	900	NA	NA	NA	NA	150	W7020674-10	JCOZAN	
N C	0.2.0	V IU.	0.00	0.62	< 3.0	< 3.0		303492931	2034	1
NS	NS	NS	NS	NS	NS	NS	NS		NS	Z
SN		NS	NS.	NS	SN	SN	6.4		NS	
< 10.	T	< 10.	< 5.0	<5.0	< 5.0	< 5.0	5.4	503002586	5030	5-20 5030
0.0	0.25	<10.	000	0.55	0.0	<5.0	000	296398	290	
020	0.20	<10.	<50	<5.0	0.6>	<5.0	650		280	
<5.0		<10.	<5.0	<5.0	0.5>	<5.0	<5.0	П	260	
<5.0		<10.	9.50	<5.0	6.0	<5.0	0.50		253	
650	<10	<20	NA	NA	NA	NA.	<5.0	W7020074-13	W7020	5-20 W7020
65.0	<10	<20		NA	NA	NA.	<5.0		W5070	
Xylenes, (Total)	Vinyl chleride	Vinyl acetate	onsensellydismirT-2,5,1	snssnsdlydismirT-4,2,1	1,2,3-Trichloropropane	Prichlorofluoromethane	Trichloroethene		Lab 8	erval

Xylenes, (Total)	<5.0	65.0	65.0	<5.0	<5.0	<5.0	<5.0	< 10.	< 10.	<50.		0.650	<5.0		2<5.0	0.5>	<5.0	<5.0	<5.0	65.0	<5.0	<5.0	<5.0	<1.0	< 10.	< 10.	< 10.	< 10.	<50	<5.0	<5.0	<5.0	<5.0	65.0	< 10.	< 10.	< 10.	10,000	201 400
Vinyl chloride	<10	<10	65.0	0.50	0.2	0.2	0.2>	< 2.0	<2.0	241	3,400	260	170 E	99	2.	4	01>	01>	<10	65.0	0.50	<2.0	0.2	0.1>	< 2.0	< 2.0	< 2.0	< 2.0	<100	<10	65.0	0.0	0.20	2.0	< 2.0	< 2.0	< 2.0	2	9
Vinyl acetate	<20	<20	<10.	<10.	<10.	<10.	<10.	< 10.	< 10.	<200	<2,000	<10.	<10.	<10.	<10.	<10.	<20	<20	<20	<10.	<10.	<10,	<10.	65.0	< 10.	< 10.	< 10.	< 10.	<200	<20	<10.	<10.	<10.	<10.	< 10.	< 10.	< 10.	NA	12
ənəxnədiydiəmirT-2,£,1	NA.	NA	<5.0	<5.0	<5.0	<5.0	9.50	< 5.0	< 5.0	NA.	NA	<5.0	<5.0	0.5>	<5.0	<5.0	NA	NA	NA.	0.50	€5.0	<5.0	<5.0	<1.0	< 5.0	< 5.0	< 5.0	< 5.0	NA	NA.	<5.0	<5.0	0.5>	<5.0	< 5.0	< 5.0	< 5.0	13.740	(2)0112
1,2,4-Trimethylbenzene	NA	NA	<5.0	<5.0	<5.0	<5.0	0.00	< 5.0	< 5.0	NA	N.A.	<50	650	<50	<5.0	<50	NA	NA	NA	<5.0	<5.0	<5.0	<5.0	<1.0	< 5.0	< 5.0	< 5.0	< 5.0	NA	NA.	<5.0	99	<5.0	<5.0	< 5.0	< 5.0	< 5.0	13.70	0.410(2)
3.2.3-Trichloropropane	NA	NA	650	<5.0	<5.0	<5.0	<5.0	< 5.0	< 5.0	NA	NA	<5.0	<5.0	<5.0	<5.0	<5.0	NA	NA	NA.	<5.0	<5.0	<5.0	<5.0	<5.0	< 5.0	< 5.0	< 5.0	< 5.0	NA	NA	<5.0	<5.0	<5.0	<5.0	< 5.0	< 5.0	< 5.0	NA	Ш.
onnationor and in the second of the second o	NA	NA.	<5.0	<5.0	<5.0	<5.0	<5.0	< 5.0	< 5.0	NA	NA	0.5>	<5.0	<5.0	<5.0	<5.0	NA.	NA	NA	0.50	<5.0	0.5>	<5.0	0.1>	< 5.0	< 5.0	< 5.0	< 5.0	NA	NA	65.0	0.50	65.0	<5.0	< 5.0	< 5.0	<5.0	1,380**	(7)00C OC
Trichloroethene	<5.0	6.0	650	6.60	<5.0	<5.0	<5.0	< 5.0	< 5.0	<50	<500	<5.0	<5.0	6.0	<5.0	65.0	280	52	W.	4	99	1990	29	292	250	330	24		9	100	100		99	66			16	~	000
Lab Sample No.	W5070191-12	W7020074-11	253789	260587	280692	296410	324191	503002560	503237141	W5090134-02	15	253793		280693			W5090134-03	W7020074-16	W7020074-24	253807	260577	280694	296402	324116	503002594	503237133	503518128	503518136	W7020074-19	W7020396-01	260581	280695	296411	324153	503002602	503237125	503493256		
Screen Interval	5-20	5-20	5-20	5.20	5.20	5-20	5.20	5.20	5-20	14-29	14-29	14-29	14-29	14-29	14-29	14-29	5.20	5-20	5.20	5.20	5.20	5.20	5.20	5.20	5.20	5.20	5.20	5.20	5-20	5:20	5:20	5.20	5:20	5.20	5:20	5.20	5.20	dwater an	00 - 10
Date Sampled	7/14/1995	2/5/1997	11/23/1999	2/28/2000	11/8/2000	6/21/2001	7/22/2002	12/03/2003	3/11/2004	9/11/1995	2/6/1997	11/23/1999	2/28/2000	11/8/2000	6/21/2001	7/19/2002	9/11/1995	2/6/1997	2/6/1997	11/23/1999	2/29/2000	11/8/2000	6/20/2001	7/18/2002	12/04/2003	3/11/2004	6/11/2004	6/11/2004	2/6/1997	2/26/1997	2/29/2000	11/8/2000	6/21/2001	7/19/2002	12/04/2003	3/11/2004	6/4/2004	Tier II Residential Cleanup Goals - Groundwater	
Sample No.	MW-154	MW-154	MW-154	MW-154	MW-154	MW-154	MW-154	MW-154	MW-154	MW-155	MW-155	MW-155	MW-155	MW-155	MW-155	MW-155	MW-156	MW-156	MW-156 Dup	MW-156	MW-156	MW-156	MW-156	MW-156	MW-156	MW-156	MW-156	MW-156DUP	MW-157	MW-157 Dup.	MW-157	MW-157	MW-157	MW-157	MW-157	MW-157	MW-157	II Residential Cle	The Day of the Lates

Reference 36 Page 181

Xylenes, (Total)	950	<5.0	0.6>	0.5>	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	0.1>	0.1>	< 10.	< 10.	< 10.	<5.0	<5.0	0.50	<1.0	<10.	< 10.	< 10.	0.0	0.0	080	920	<1.0	<1.0	0.50	<5.0	0.50	< 10.	< 10.	< 10.	10,000	204,400
Vinyl chloride	<10	<5.0	<5.0	6.0	<2.0	0.2>	<2.0	65.0	<2.0	<2.0	<2.0	<5.0	5,4	3.3	8.2		< 2.0	< 2.0	< 2.0	8.2	570	170	120	< 2.0	<2.0	< 2.0	0.2	070	20	0.0	0.1>	0.1>	0.20	0.20	0.2	< 2.0	< 2.0	< 2.0	2	10
Vinyl acetate	<20	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<5.0	<5.0	< 10.	< 10.	< 10.	<10.	<10.	<10.	<5.0	< 10.	< 10.	< 10.	×10.	×10.	210	<10.	<5.0	6.0	<10,	<10.	<10.	< 10.	< 10.	< 10.	NA	NA
3,5-7. Trimethylbenzene		920	0.50	950	950			0.50	<5.0			<5.0	<5.0		<1.0	<1.0	< 5.0	< 5.0	< 5.0	<5.0	<5.0	<5.0	<1.0	< 5.0	< 5.0	< 5.0	000	000	032	650	<1.0	<1.0	650	99	<5.0	< 5.0	< 5.0	< 5.0	13.7(4)	5,11000
1,2,4-Trimethylbensene	NA	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	65.0	<5.0	<1.0	<1.0	< 5.0	< 5.0	< 5.0	65.0	<5.0	65.0	<1.0	<.5.0	< 5.0	< 5.0	000	007	0.50	650	<1.0	<1.0	65.0	6.0	<5.0	< 5.0	< 5.0	< 5.0	13.7	5,110 ⁽²⁾
1,2,2-Trichloropropune	NA	650	650	<5.0	65.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	< 5.0	< 5.0	< 5.0	<5.0	<5.0	<5.0	<5.0	<.5.0	< 5.0	< 5.0	0.0	0.0	030	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	< 5.0	< 5.0	< 5.0	NA	NA
Trichlorofluoromethans	NA	6.60	6.50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	0.1>	0.1>	< 5.0	< 5.0	< 5.0	<5.0	<5.0	6.0	<1.0	<5.0	< 5.0	<5.0	0.0	0.0	0.97	650	0.1>	0.1>	<5.0	6.0	6.0	< 5.0	< 5.0	<5.0	1,3804	30,70012
Trichloroethene	65.0	650	6.0	<5.0	6.0	6.0	6.0	6.0	<5.0	6.0	6.0	65.0	<5.0	6.0	<1.0	<1.0	< 5.0	< 5.0	-400		4,300	2,700	2,550	53	200	< 5.0	0.0	0.0	1.500	1,860	1,650	1,600	18	11		21		16	5	260
Lab Sample No.	W7020074-20	253794	İ	260584	280696	İ		260585		296412		Ì						503237281	503493264	260552	280699	296416	324103	503002628	\neg	12	Т	290394	T	296395	324117	324119	280702	296413	324154	503002636	503237117	503493249		
Screen Interval	14:29	14:29	14-29	14-29	14-29	14-29	14.29	NA	NA	NA	Unknown	3-13	3-13	3-13	3-13	3-13	3.13	3-13	3-13	3.13	3-13	3-13	3-13	3-13	3-13	3.13	NA.	10.30	NA	NA	6-16	6-16	16-26	16-26	16-26	16-26	16-26	16-26	dwater "	3roundwater (1)
Date Sampled	2/6/1997	11/23/1999	2/28/2000	2/28/2000	11/8/2000	6/21/2001	7/19/2002	2/28/2000	11/7/2000	6/21/2001	7/19/2002	3/2/2000	11/8/2000	6/21/2001	7/17/2002	7/17/2002	12/04/2003	3/11/2004	5/4/2004	3/2/2000	11/8/2000	6/21/2001	7/18/2002	12/04/2003	3/11/2004	6/4/2004	11/8/2000	00202001	11/6/2000	6202001	7/18/2002	7/18/2002	11/7/2000	6/21/2001	7/19/2002	12/05/2003	3/11/2004	6/4/2004	Tier II Residential Cleanup Goals - Groundwater	Tier II Non-Residential Cleanup Goals - Groundwater
Sample No.	MW-158	MW-158	MW-158	MW-158 Dup.	MW-158	MW-158	MW-158	MW-159	MW-159	MW-159	MW-159	MW-160	MW-160	MW-160	MW-160	MW-160 Dup.	MW-160	MW-160	MW-160	MW-161	MW-161	MW-161	MW-161	MW-161	MW-161	MW-161	MW-162	MW-162	101 ANA	MW-163	MW-163	MW-163 Dup	MW-164	MW-164	MW-164	MW-164	MW-164	MW-164	II Residential Clea	II Non-Residentia

Xylenes, (Tolul)	<5.0	<5.0	0.1> 0.00	10 < 10.	13 < 10.	6.5 < 10.	63 <5.0	15.8 < 1.0	8 < 10.	.7 < 10,	< 10,	17 < 10,	11 <5.0	1.7 < 1.0	< 10.	<10.	< 10.	65.0	0.1>	0.1>1.	<5.0	0.1>	<10,	< 10.	< 10.	6.4 <5.0	0.65.0	0.1>	10,000	204,400
Vinyl chloride	0.25	<2.0	36			•		114			< 2.0				< 2.0	< 2.0		<2.0	Ì		0.25		< 2.0	< 2.0	< 2.0				2	10
Діпуі исециіс	NA	NA	<5.0	< 10.	< 10.	< 10.	NA	<5.0	< 10.	< 10.	< 10.	< 10.	NA	<5.0	< 10.	< 10.	< 10.	NA.	65.0	<5.0	<10.	<5.0	< 10.	< 10.	< 10.	<10.	<10.	<5.0	NA	NA
onosnodlyddominT-2,E ₄ L	<5.0	<5.0	0.1>	< 5.0	< 5.0	< 5.0	<5.0	<1.0	< 5.0	< 5.0	< 5.0	< 5.0	<5.0	<1.0	< 5.0	<.5.0	< 5.0	<5.0	0.1>	<1.0	<5.0	<1.0	< 5.0	< 5.0	< 5.0	0.50	65.0	<1.0	13.7 ¹⁴	5,110 ⁴⁰
onosnodłydromirT-+,£,ł	<5.0	<5.0	<1.0	< 5.0	< 5.0	< 5.0	<5.0	<1.0	< 5.0	< 5.0	< 5.0	< 5.0	<5.0	<1.0	< 5.0	< 5.0	< 5.0	<5.0	<1.0	<1.0	<5.0	<1.0	< 5.0	< 5.0	< 5.0	0.5>	<5.0	<1.0	13.7 ⁽⁴⁾	5,110 ⁴⁰
1,2,3-Trichloropropane	<5.0	<5.0	<5.0	< 5.0	< 5.0	< 5.0	<5.0	<5.0	< 5.0	< 5.0	< 5.0	< 5.0	<5.0	<5.0	< 5.0	< 5.0	< 5.0	<5.0	€5.0	<5.0	<5.0	<5.0	<.5.0	< 5.0	< 5.0	<5.0	<5.0	<5.0	NA	NA
Trichlorofluoromethan	0.50	6.0	0.1>	<5.0	<5.0	<5.0	<5.0	0.1>	<5.0	< 5.0	<5.0	<.5.0	<5.0	0.1>	<5.0	<5.0	< 5.0	0.5>	<1.0	<1.0	0.5	<1.0	<.5.0	< 5.0	< 5.0	0.5	0.5>	<1.0	1,380(4)	30,700
Trichloroethene	0.5>	0.5>	<1.0	< 5.0	< 5.0	< 5.0	9.0	<1.0	< 5.0	< 5.0	< 5.0	< 5.0	<5.0	<1.0	< 5.0	< 5.0	< 5.0	65.0	10.8	111.	<5.0	<1.0	< 5.0	< 5.0	< 5.0	65.0	<5.0	<1.0	2	260
Lab Sample No.	294563	294564	324108	503002644	503237083	503493066	294565	324106	503046765	503046773	503237067	503493033	294566	324026	503002669	503237109	503493223	294567	324110	324111	312995	324019	503002693	503237042	503493159	313002	313003	324023		
Screen Interval	10-20	10.20	10:20	10-20	10-20	10-20	10-20	10-20	10-20	10-20	10-20	10-20	12-22	12-22	12-22	12-22	12-22	12-22	12-22	12-22	15-25	15-25	15-25	15-25	15-25	17-27	17-27	17-27	dwater ¹¹⁷	Groundwater ⁽¹⁾
Date Sampled	6/1/2001	6/1/2001	7/18/2002	12/05/2003	3/11/2004	6/3/2004	6/1/2001	7/18/2002	12/19/2003	12/19/2003	3/11/2004	6/3/2004	6/1/2001	7/17/2002	12/04/2003	3/11/2004	6/3/2004	6/1/2001	7/18/2002	7/18/2002	1/30/2002	771772002	12/04/2003	3/11/2004	6/3/2004	1/31/2002	1/31/2002	7/17/2002	anup Goals - Groun	I Cleanup Goals - 6
Sample No.	MW-165S	MW-165S Dup.	MW-165	MW-165S	MW-165S	MW:165S	MW-166S	MW-166	MW-166S	MW-166S DUP	MW-166S	MW-166S	MW-167S	MW-167	MW-167S	MW-167S	MW-167S	MW-168S	MW-168	MW-168S Dup.	MW-169S	MW-169S	MW-169S	MW-169S	MW-169S	MW-170S	MW-170S Dup.	MW-170S	Ter II Residential Cleanup Goals - Groundwater W	Ter II Nor-Residential Cleanup Goals - Groundwater

Page 32 of

able 9a - Shallow Monitoring Well Groundw

114				camp Goal p Goal p Coal	E 2 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	empound exceeds the VRF Tire II Non-Residential sympound exceeds the VRF Tire II Residential Class employed exceptive the VRF Tire II Residential Che	ripound exco
5.11	NA	30,700	260		Groundwater ⁽¹⁾	Tier II Non-Residential Cleanup Goals - Groundwater ⁽¹⁾	esidentia
13.7	NA	1,380*	82		ndwater ⁽¹⁾	Tier II Residential Cleanup Goals - Groundwater U	ential Cle
920	<5.0	<5.0	800	253806	5-15	11/23/1999	.2
<50	<5.0	870 <5.0	870	253805	5-15	11/23/1999	OB-1
NA	<10	<1.0	<1.0	82969	NA	5/27/1993	CHISI-MW235 (MW135 Dup)
SN	NS	SN		503207540		3/3/2004	MW-173
<1.0	0.5>	<1.0	<1.0	327656	15.25	9/4/2002	MW-172S
<1.0	<5.0	<1.0		324021	12.22	2/17/2002	MW-171S
<5.0	<5.0	<5.0	<5.0	312997	12.22	1/30/2002	MW-171S
onsansdlydismirT-b,\$,1	3.12-3-Trichloropropanc	Trichlorofluoromethan	Trichloroethene	Lab Sample No.	Screen Interval	Date Sampled	Sample No.

Table 9n
Shallow Monitoring Well Groundwater Analytical Results for VOCs (ug/L.)
Former General Motors Corporation
Allison Gas Turchine Division, Plant 10
Indirampolis, Indianapolis, Indiana
Indianapolis, Indiana
IDEM VRF #6991004
KERAMIDA Project No. 2829E

Table 9b - Shallow Monitoring Well Groundwater - PAHs

¹²⁷ Calculated using surrogate toxicity values and Tier II equations.
Of Tier I Health Protective Levels for Phenanthrene, Iedomethane and Acrolein Technical Memo by Indiana Voluntary Remediation Program, dated 4/21/98.

Indiana Department of Environmental Management Voluntary Re-

arce Guide, Appendix F Tier II Cleanup Goals-Human Health Evaluation by Office of Env µg/L = micrograms per liter

38.4(2

1,824

MW-151

MW-135 MW-135 MW-145 MW-145 MW-146 MW-146 MW-147 MW-148 MW

The given value

Shallow Monitoring Well Groundwater Analytical Results for PAHs (ug/L) Allison Gas Turbine Division, Plant 10 Former General Motors Corporation IDEM VRP #6991004 KERAMIDA Project No. 2829E Indianapolis, Indiana

pyrene Indeno (1,2,3-ed)

> пітьтасепе Dibenzo (a,h)

Unoranthene geuzo (k)

fluoranthene

Benzo (a) pyrene

Senzo (a) anthracene

уссивритулепе

Lab Sample No. 324157 324158

MW-133R MW-132 MW-132

geuso (p)

Benzo (ghi) perylene

Table 9b - Shallow Monitoring Well Groundwater - PAHs Page 2 of 3

pyrene 10 Indeno (1,2,3-cd) 4,088 птргасепе Dibenzo (a,h) 391.8 Unoranthene S genzo (k) Benzo (ghi) perylene Benzo (b) Benzo (a) pyrene geuzo (a) anthracene Anthracene Acenaphthylene 296401 1/2001 Sample No.

MW-152

MW-152

MW-153

MW-153 Dup.

MW-153 Dup.

MW-153

MW-153 MW-154 MW-154 MW-154 MW-155
MW-155
MW-156
MW-156
MW-157
MW-157
MW-157
MW-158
MW-159
MW-159

Table 9b
Shallow Monitoring Well Groundwater Analytical Results for PAHs (ug/L.)
Former General Motors Corporation
Allison Gas Turbine Division, Plant 10

Indianapolis, Indiana IDEM VRP #6991004 KERAMIDA Project No. 2829E

Indiana Department of Environmental Management Voluntary Remediation

Calculated using surrogate toxicity values and Tier II equations

Tier I Health Protective Levels for Phenanthrene, Iodon

al is not available).

Table 9b - Shallow Monitoring Well Groundwater - PAHs-Page 3 of 3

Pyrene	2.7	0.26	4.7	<0.20	<0.20	7.2	<0.20	2.7	7.7	<0.20	7.2	<0.20	2.7	<0.20	7.7	<0.20	<0.20	66'0	<0.20	<0.20	912	3.066	2,000	
Phenanthrene	<6.4	<1.02	<6.4	<1.02	<1.01	<6.4	<1.02	49>	49>	<1.01>	49>	<1.00	<6.4	<1.01	<6.4	<1.00	<1.00	<1.00	<1.00	<1.01	23000	320(0)	720	
eneledidqeV.	<8.0	<2.04	<8.0	<2.04	<2.02	<8.0	<2.04	0.8>	<8.0	<2.02		<2.00	<8.0	<2.02	0.8>	<2.00	<2.00	<2.00	<2.00	<2.02	1,216	4 086	4,000	
Indeno (1,2,3-ed)	0.35	<0.20	<0.20			<0.20	<0.20	<0.43				<0.20			<0.43		<0.20	0.43	<0.20	<0.20	0.40	10	10	
Fluorene	2.1	67	<2.1	- 2	<1.01	42.1	<1.02		2.1			<1.00		<1.01	<2.1			<1.00	<1.00	<1.01	1,216	4 000	4,055	
Fluoranthene		0.28	2.1		<0.20		<0.20	2.1		0.21	4.1	0		<0.20	2.1		<0.20	1.21	<0.20	<0.20	243.2	7 210	0.718	
Dibenzo (a,h) anthracene	6.33	<0.10	<0.20	<0.10	<0.10	<0.20	<0.10	<0.30	<0.30		<0.30		<0.30	<0.10	<0.30	<0.10	<0.10	0.41	<0.10	<0.10	0.30	0.	07	
Chrysene	0.43	<0.20	<0.20		<0.20		<0.20		<0.20		<0.20	<0.20		<0.20	<0.20		<0.20	89.0	<0.20	<0.20	0.20	2010	391.8	
Benzo (k)			<0.20	<0.20	<0.20	<0.20	<0.20	<0.17	< 0.17	<0.20	< 0.17	<0.20	<0.17	<0.20	<0.17		<0.20	0.37	<0.20	<0.20	0.20	20.3	39.75	
Benzo (ghi) perylene		63	<0.76	<0.20	< 0.20	> 97.0>		> 97.0>			> 97.0>			< 0.20	> 92.0>	<0.20	<0.20	0.75	< 0.20	<0.20	38.4(2)	(7)517	013	
Benzo (b)	0.46	0.24	<0.20	<0.20	<0.20	<0.20	<0.20	<0.18	<0.18		<0.18	<0.20	<0.18	<0.20	<0.18	<0.20	<0.20	69'0	<0.20	<0.20	0.20	101	10	
Benzo (a) pyrene	0.32	0.23	<0.20	<0.20		<0.20	<0.20	<0.20			<0.20		<0.20		<0.20	<0.20		92.0	<0.20	<0.20	0.20	0,	10	
Benzo (a) anthracene	0.27	0.14	20	<0.10		<0.20		<0.13		<0.10			<0.13		<0.13	<0.10		0.54	<0.10	<0.10	0.10	0,	OI	
упривесие	9.9>	<1.02	<6.6 <0.	<1.02	<1.01 <	<6.6 <	<1.02	> 9.9>	-			<1.00 <	> 9.9>		6.6	<1.00	<1.00	<1.00	<1.00	<1.01	9,120	00000	30,660	
Acenaphthylene		2	10	<1.02	> 10.1>	<10	<1.02 <	> 01>			> 01>	<1.00	<10	<1.01	<10	> 00.1>	<1.00	> 00.1>	<1.00	<1.01	6.89(2)	(Plone o	2,040	
Асепярhthепе		2	×18	<1.02			<1.02			2	×18	> 00.1>	×18	_		0		> 00.1>	> 00.1	<1.01	1,824	0000	6,132	
Lab Sample No.					324119	Г							294566						324023			The same		sound Goal
Screen Interval		10.20	NA	91-9	6-16	16-26	16-26	10-20	10-20	10-20	10-20	10-20	12-22	12-22	12-22	12-22	12-22	15-25	17-27	12-22	undwater (1)		- Groundwater	annual commonned accounts the VPP Tier II Non-Residential Cleanum Goal
Date Sampled	6/20/2001	7/18/2002	6/20/2001	7/18/2002	7/18/2002	6/21/2001	7/19/2002	6/1/2001	6/1/2001	7/18/2002	6/1/2001	7/18/2002	6/1/2001	7/17/2002	6/1/2001	7/18/2002	7/18/2002	7/17/2002	7/17/2002	7/17/2002	canup Goals - Grou		al Cleanup Goals	pands the VPP Ther
Sample No.	MW-162	MW-162	MW-163	MW-163	MW-163 Dup.	MW-164	MW-164	MW-165S	MW-1658 Dun.	MW-165	MW-166S	MW-166	MW-167S	MW-167	MW-168S	MW-168	MW-168 Dup.	MW-169S	MW-170S	MW-171S	ier II Residential Cleanup Goals - Groundwater		ier II Non-Residential Cleanup Goals - Groundwater	tacted compound ex

Table 9b
Shallow Monitoring Well Groundwater Analytical Results for PAHs (ug/L)
Former General Motors Corporation
Allison Gas Turbine Division, Plant 10

Indianapolis, Indiana IDEM VRP #6991004 KERAMIDA Project No. 2829E

PAHs = Polynuclear Aromatic Hydrocarbons Samples analyzed using EPA

μg/L = micrograms per liter NA = Not Appl

Oalculated using surrogate toxicity values and Trer II equations.

Response, July 1996,

(2) IDEM VRP Interoffice Memo dated on January 26, 1998.

pg/L = micrograms per liter
MA = Not Applicable

(1) Indiana Department of Environmental Management Voluntary Remediation Program Resource

Guides, Appendix F Tier II Cleanup Goals-Human Health Evaluation by Office of Environmental

Bases
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Management
Managemen

Samples analyzed using EPA Method Series 6000/7000

Detected compound exceeds the VRP Titer II Non-Residential Cleanup Goal Detected compound exceeds the VRP Titer II Residential Cleanup Goal Detected compound is below the VRP Titer II Residential Cleanup Goal

IIS	115	1.9	12(3)	115	1.12	\$\$1°L	0\$	(1	- Groundwater	Cleanup Goals	r II Non-Residential
125	0\$	5.0	(7)\$I	100	0.8	2,000	09		Oundwater (1)	nup Goals - Gro	r II Residential Clea
VN	VN	VN	.25	<10.	-55	ΥN	٧N	324153	2-20	7/16/2007	LSI-MW
VN	AN	VN	.85	<10.	.85	VN	VN	111967	2-20	1007/17/9	LSI-WM
.65	9	2.0>	9	<10.	.65		L	\$69087	9-20	11/8/2000	LSI-MW
VN	VN	VN	.6>	<10.	.65.	AN	VN	324116	2-20	Z00Z/81/L	9C1-WM
VN	VN	VN	.6>	<10.	.65	VN	VN	704967	2-50	1007/07/9	951-WM
.6>	-(5)	č.0>	210	1015	.65	9F	VN	769087	07-5	11/8/2000	951-WM
VN	VN	VN VN	.0	(10.	.65	AN	VN	324155	14-29	7/19/2002	SS1-WM SS1-WM
AN.	AN	2.0>		86	.6>		SE VIN	280693	14.29	11/8/2000	SSI-MW
VN	VN	VN	'5>	.01>	.65	VN	VN	324191	07-5	7/22/2002	#SI-MW
VN	VN	VN	0.01 >	0.01 >	0.2>	VN	VN	203002560	2-20	12/03/2003	DS1-WM
VN	VN	VN	.6	<10.	·\$>	VN	VN	014967	9-20	1007/17/9	MW-154
·\$>	'5>	č.()>	.65	<10.	· (2)	011	.65.	780087	2-20	11/8/2000	121-WM
VN	AN	VN	0.01 >	0.01 >	0.2>	VN	VN	203002552	5.61-2.4	12/03/2003	MW-153DUP
VN	VN	٧N	0.01 >	0.01 >	0.6 >	AN	VN	503002545	2.91-2.4	12/03/2003	MW-153
VN	VN	VN	.65.	<10.	.65	VN	VN	324185	5.61-2.4	7/22/2002	MW-153
VN	VN	VN	.65	.01> .01>	.65.	VN	VN	504967	\$'61-\$'\$	1007/17/9	MW-153 Dup.
-S>	-S>	2.0>	1	<10.	.8>		VIN	169087	5'61-5'7	11/8/2000	ESI-MW
VN	VN	VN	0.01 >	0.01 >	0.2 >	VN	VN	Z030050S	07-5	12/03/2003	ZS1-WM
VN	VN	VN	68	<10.	.65	VN	VN	324016	9-20	7/15/2002	WW-152
VN	VN	VN	9.7	<10.	.85	AN	VN	101967	9-20	1007/07/9	MW-152
.6>	.65	2.0>	13	<10.	.65	94	6	069087	2-20	11/8/2000	MW-152
VN	VN	VN	.6	<10.	.6>	VN	AN	324114	2-20	7/18/2002	151-WM
VN	VN	VN	.6>	(01>	.6>	AN	AN	866362	2-50	1007/07/9	ISI-WM
.2>	9	2.0>		11		051	·(5)	580689	2-20	11/8/2000	ISI-WM
VN	AN	AN	0.01 >	0.01 >	0.2>	VN	VN	203002229	61-4	12/03/2003	MW-150
VN	VN	VN	.6>	<10.	<5. <5.	VN	VN	324159	61+	1/16/2002	051-WM
VN	-S-	2.0>	.6>	<10.		VN	-S. AN	068967 889087	61-7	11/8/2000	051-WW
AN S>	VN	VN	0.01 >	< 10.0	0.2 >	VN	VN	503002479	5.25-2.01	12/03/2003	841-WM
AN	AN	VN	.S>	<10.	.65	VN	VN	324188	8.85-2.01	7/22/2002	841-WM
VN	٧N	VN	.65	<10.	.65	VN	VN	801/967	10.5-25.5	1007/17/9	.quG 841-WM
VN	VN	ΨN	.5>	.01>	.65.	VN	VN	L01/967	10.5-25.5	1007/17/9	MW-148
.6>	.65	5.0>	.5>	<10.	.25	230	.8>	Z8908Z	10.5-25.5	11/8/5000	.quG 841-WM
.6>	<5.	č.0>	L	<10.	-	240	·\$>	280686	10.5-25.5	11/8/5000	MW-148
VN	VN	VN	8	<10.	0.25	VN	VN	324189	20-30	7/22/2002	A741-WM
VN	VN	VN	52	01	.65	VN	VN	500000	70-30	1007/17/9	AT41-WM
'S>	.6>	8.0>	O	0.01.>	'S>	AN	0 VAI	289085	20-30	0007/8/11	WM-143
VN	VN	VN		(5) 0.01 >	VN	VN	VN	047840502 047840502	12-25	12/19/2003	MW-146 DUP
AN	AN	AN	VN	134 (1)	AN	0300	AN				
AN	AN	AN	VN	(c) 167	VN	VN	VN	267340608	12-25	15/19/2003	9†1-MW
VN	VN	AN	E.11	71°E	0.6 >	VN	VN	503002461	12-52	12/03/2003	971-WM
VN	VN	VN	.65		0.5	VN VN	VN	254017	\$7-\$1 \$7-\$1	7/15/2002	9ti-MW
.es	VN	\$.0>	'S>	160 930	.65.	VN 0SI	VN EF	589087	12-55	1002/12/9	951-WM
VN	VN	AN	0.01 >	0.01 >	0.8 >	AN	VN	203002423	25.71.5	15/04/5003	SPI-MW
VN	AN	VN	-100	<10.	0.2>	VN	VN	324184	2,72-2,71	7/22/2002	SPI-WM
VN	VN	VN		.01>	.8>	VN	VN	814967	2.72-2.71	1007/17/9	StI-WM
.6>	.65	2.0>	57	10	.6>	061	71	280652	2,72-2,71	11/8/2000	Sh1-WM
٧N		AN		8.0€	0.8 >	ΨN		503002149	10-20	12/04/2003	SEI-WM
VN	VN	VN	0.1>	L'97	0.1>	VN	VN	324015	10-20	7/15/2002	MW-135
AN	AN	VN	.5>	PE	.65	VN	VN	266393	10-50	1007/07/9	SEI-MW
'Ç>	8	5.0>	0'01 >	0.01 >	. (S)		L VIII	16120000	10-20	11/8/5000	MW-135
VN	VN	VN	0.01 >	0.01 >	0.2 >	VN	VN	1£1700£0£	81-8	12/03/2003	MW-132R
VN	VN	VN VN	0.01 >	.01>	.65	VN	VN	324190	10-20	12/03/2003	MW-132
VN	VN	VN	0.01 >	0.01 >	0.2 >	VN	VN	203002115	L1-L	12/03/2003	4UGRI-01-WA
VN	VN	VN	0.01 >	0.01 >	0.2>	VN	VN	503002107	LI-L	12/03/2003	MW-10-1R
٧N	VN	VN	-5>	.01>	.6>	VN	VN	324158	L1-L	2002/61/2	4du I-01-WN
VN	AN	٧N	.6>	.01>	.6>	VN	VN	324157	LI-L	7/19/2002	I-01-WM
.6>		2.0>	9	.01>	.6>	12	.65	280650	L1-L	11/8/2000	I-01-WM
Total Silve	Total Selenium	Total	Total Lead	Total	Total muimba2	Total muirad	IntoT SinserA	Lab Sample No.	Screen Interval (feet)	Date Sampled	Sample No.

Table 9c

Shallow Monitoring Well Groundwater Analytical Results for Metals (ug/L)
Former General Motorics Corporation
Allison Gas Turbine Division, Plant 10
Indianapolis, Indiana
KERAMIDA Project No. 2829E
KERAMIDA Project No. 2829E

Indianapolis, Indiana IDEM VRP #6991004 KERAMIDA Project No. 2829E Former General Motors Corporation Allison Gas Turbine Division, Plant 10 Shallow Monitoring Well Groundwater Analytical Results for Metals (ug/L)7able 9c

r II Non-Residential Cl		TOTAL MONTH STATE		20	t21,7	1.12	TTC I	Ct I	vo I	***	
Driver, d - Kil	in D and D in i		(1)	05	1512	115	IIS	(7)\$1	1.9	115	115
TI Residential Cleanup	leanup Goals - Gr	roundwater (1)		05	2,000	0.8	100	12(5)	5.0	05	125
SILI-AW	2002/L1/L	15-55	324021	VN	VN	0.2>	.01>	.65	WAT	VIII	
	1/30/2002	12-22	312997	VN	VN	0.1>	91		VN	AN	AN
	7007/L1/L	17-77	324023	VN	VN	0.2>	.01>			AN	AN
The second of th	1/31/5005	L7-L1	313003	VN	VN	0.1>	01>		AN	VN	VN
	1/31/2002	LZ-L1	313002	VN	VN	0.1>	6.3		VN	VN	VN
	Z00Z/L1/L	12-52	324019	AN	VN	0.6>	99			VN	AN
	7007/06/1	12-52	312995	VN	VN	0.1>	<2.0	0.1>	VN	VN	VN
THE RESERVE THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	2002/81/L	12-22	324111	VN	VN	0.2>			VN	AN	AN
	2002/81/L	12-22	324110	VN	VN	0.6>	<10.	-5.	VN	VN	VN
	1007/1/9	12-22	195462	VN	VN	.85	56		VN	VN	VN
	2002/11/2	12-22	324026	VN	VN				VN	AN	AN
	1007/1/9	12-22	9995767	VN	VN	(5.	.01>	. (5)	AN	AN	VN
	2002/81/L	10-20	324106	VN	AN	.65	.01>		AN	AN	VN
	1007/1/9	02-01	595762	VN	AN	.65	(01>	(\$)	VN	VN	VN
	7002/81/7	10-20	324108	VN	VN		1015		VN	VN	AN
	1007/1/9	10-20	594562	VN	VN	0,2>	<10.	.65	VN	AN	ΥN
	1002/1/9	02-01	594563	VN	VN	'5>	T8		VN	AN	VN
The state of the s	2007/61/7	97-91	324154	VN	VN	.6>		101	AN	AN	VN
	1007/17/9	97-91	296413	VN	VN	.65	<10.	.8	VN	VN	VΝ
	11/7/2000	16-26	280702	E VIN		.2>	012	.65	AN	VN	AN
	7/18/2002	91-9	324119	VN	VN	.65	.01>		5.0>	8	.6>
	7/18/2002	91-9	324117	VN	VN	(5)	<10.	.65	AN	VN	VN
	6/20/2001	VN	568962	VN	VN	.0	<10,	27	AN	VN	VN
	11/8/2000	AN	107082	.65	VIN.	.65	<10.	.6	\$.0>	VN	VN
	7/18/2002	10-20	324118	VN	VN	'\$>	<10.	3-		01	.6>
	6/20/2001	VN	56967	VN	VN	,6>	.01>	0	VN	AN	VN
	0002/8/11	VN	007082	0	20	'9>	<10.	.85	\$0>	AN	VN
	2002/81/7	3-13	324103	VN	VN	.65	<10.			L	.65
	1007/17/9	3-13	911967	VN	VN	.25	<10.	(5)	VN	AN	AN
	11/8/2000	3-13	669087	77		.85	012		\$.0>	AN	AN
	7/17/2002	3-13	324028	AN	VN	.65	.01>	.65		01	.6>
	7/17/2002	3-13	324027	VN	VN	(5)	<10.	.65	VN	AN	VN
	1007/17/9	3-13	L14967	VN	VN	.8	<10.	.8	VN	VN	AN
	0007/8/11	3-13	869082	7.1		.0	LC VI		2.0>	'S>	.e>
	7002/61/7	Unknown	324152	VN	VN	'5>	<10.	.6>	VN	AN	
	1007/17/9	Писпомп	214962	VN	VN	'5>	<10.	'5>	VN	AN	VN
	0007/L/11	Опклочп	L6908Z	ST	1,000	'\$>	Sp.	-	2.0>	CI	.6>
	7/19/2002	14-29	324156	AN	VN	.85	.01>	(2)	VN	VN	VN
	1007/17/001	14-29	514967	VN	VN	.65	<10.	35	VN	VN	VN
	11/8/5000	14-29	969087	SI	360	<5.	79		2.0>	11	.6>
		Interval (feet)	'ON	Arsenic	Barium	Cadmium	Chromium		_	Selenium	Silver
		Sereen	Lab Sample	IntoT	IntoT	IstoT	IntoT	11	IntoT	IntoT	IntoT

(2) IDEM VRP Interoffice Memo dated on January 26, 1998.

Response, July 1996.

Guide, Appendix F Tier II Cleanup Goals-Human Health Evaluation by Office of Environmental $\frac{NA-Modern}{Modern}$ per liter $\frac{NA-Modern}{Mongenen}$ Mennegement Voluntary Remediation Program Resource

Samples analyzed using EPA Method Series 6000/7000

Fable 10a - Deep Monitoring Well-Groundwater - VOCs Page 1 of 12

Reference 36

Chloromethane	<10.	<5.0	< 5.0	< 5.0	< 5.0	< 5.0	<10.	<5.0	<5.0	<5.0	< 5.0	< 5.0	<10.	<5.0	< 5.0	< 5.0	<.5.0	< 5.0	<10.	<5.0	<10.	<5.0	< 5.0	< 5.0	< 5.0	<10,	65.0	<10.	6.0	<5.0	<5.0	NA		NA		
mrolorold.)	<20	<1.0	< 5.0	< 5.0	< 5.0	< 5.0	<20	<1.0	<5.0	<5.0	< 5.0	< 5.0	<20	<1.0	< 5.0	< 5.0	< 5.0	< 5.0	<20	0.1>	<20	<1.0	< 5.0	< 5.0	< 5.0	<20	0.1>	<20	<1.0	<1.0	<1.0	300		468.9		
SnadisoroldO	<10.	<5.0	< 5.0	< 5.0	< 5.0	< 5.0	<10.	0.50	0.5	<5.0	< 5.0	< 5.0	<10.	0.5>	< 5.0	< 5.0	< 5.0	< 5.0	<10.	65.0	<10.	0.5	<.5.0	< 5.0	< 5.0	<10.	0.6	<10.	0.6	65.0	0.0	22.161	201100	NA		
Chlorodibromo- methane		<1.0	< 5.0	< 5.0	< 5.0	< 5.0	6.0	<1.0	6.0	6.0	< 5.0	<.5.0	0.5	<1.0	< 5.0	< 5.0	< 5.0	< 5.0	0.0	<1.0	65.0	0.1>	< 5.0	< 5.0	< 5.0	0.6>	0.1>	6.0	0.1>	0.1>	<1.0	NA		NA		
Chlorobenzene	0.55	<1.0	< 5.0	< 5.0	< 5.0	< 5.0	6.0	<1.0	65.0	6.0	< 5.0	< 5.0	<5.0	<1.0	< 5.0	< 5.0	< 5.0	< 5.0	6.0	<1.0	65.0	<1.0	< 5.0	< 5.0	< 5.0	6.0	<1.0	65.0	<1.0	<1.0	<1.0	11900		2,040 ⁽²⁾		
Carbon tetrachloride		0.1>				<5.0	6.0					< 5.0						<5.0	6.0				<5.0			6.0	0.10	6.0	0.1>	0.1>	<1.0	NA	100	N.A.		
Carbon disulfide	6.50	<1.0	< 5.0			< 5.0	65.0				<5.0			<1.0					6.0	0.15						6.0	0.1>	6.0	0.15	0.15	c1.0	1 060(2)	20001	10,200(2)		
tert-Butylbenzene		<1.0	< 5.0	< 5.0	< 5.0	< 5.0	6.0			6.0		< 5.0																		<1.0	0.13	(5)19		1,020(2)		
ec-gntylbenzene		<1.0	<5.0	<5.0					6.0										€.0									6.0			<1.0	(7)		1,020		
n-Butylbenzene			<5.0	<5.0	< 5.0	<.5.0	6.0					< 5.0	6.0					< 5.0	6.0		6.0							€.0		(1.0	<1.0	6,4(2)		1,020 ⁽²⁾		
Bromomethane		0.0	< 5.0	<5.0			<10,		6.0				Ť		< 5.0									<5.0					€5.0	5.0	5.0	*2	-	NA		
тозотоля		1.0	< 5.0						€5.0										<5.0									<5.0		1.0	<1.0	NA	200	NA		
Bromodichloro- methane		<1.0	< 5.0	< 5.0	< 5.0	< 5.0	S.0 ×				< 5.0								5.0										<1.0	> 0.1	<1.0	(2)0000	7070	46.1(2)		
Bromochloromethane		0.1>	< 5.0 <	< 5.0			5.0	<1.0			< 5.0		<5.0	<1.0	1								< 5.0 <					5.0	1.0	> 0.1	0.1	100	1	NA		
Bromobenzene		<1.0	< 5.0	< 5.0	< 5.0	< 5.0	S.0 <	> 0.1>		<1.0		< 5.0	> 0.6>	<1.0				< 5.0			> 0.5>		< 5.0					> 0.5>	1.0	<1.0	<1.0	NA	W.	NA		
Benzene		V 0.15	< 5.0	< 5.0		< 5.0	× 0.5	<1.0			< 5.0		< 0.5		1	1					<5.0	2	< 5.0						<1.0	<1.0	<1.0	-		98.6		
Acrylonitrile	<250	60.0	<100	< 100	<100	< 100	250	0.05		€0.00		< 100	C250	€20.0					C250	1	<250	C50.0						<250	0.05	<50.0	-20,0	N.A.	WW.	NA		
Acrolein	<250		<100	<100	<100	< 100 <	<250	<50.0		<50.0		< 100	<250	<50.0					<250		<250	<50.0	< 100 <						<50.0	<50.0	<50.0	N.A.	W.	NA		
Acetone																																2,040	2,040	10,220		
No.	05>	<20.0	51 < 100	75 < 100	11 < 100	11 < 100	950			12 <20.0	26 < 100		<50	<20.0			91 < 100	7		<20.0	050	<20.0	01 < 100				<20.0		<20.0	<20.0	<20.0	-		H		I
Lab Sample No.	312999	324109	50300265	503237075	50349304	50349304	313000	324107	503079204	503079212	503237059	5034929	313005	324025	50300267	503002685	50323709	503493207	313004	324112	312996	324020	50300270	503237034	503493082	313001	324024	312998	324022	327654	327655	-			leanup Goal	th Civil
Screen Interval	42-47	42-47	42-47	42-47	42-47	42-47	46-51	46-51	16-51	46-51	46-51	46-51	28-33	28-33	28-33	28-33	28-33	28-33	26-31	26-31	32-37	32-37	32-37	32-37	32-37	34-39	34-39	44-49	44-49	33-38	33-38	(D)	Outdwater	Groundwater (B)	Non-Residential C	
Date Sampled	1/30/2002	7/18/2002	12/05/2003	3/11/2004	6/3/2004	6/3/2004	1/31/2002	7/18/2002	1/6/2004	1/6/2004	3/11/2004	6/3/2004	1/31/2002	7/11/2002	12/04/2003	12/04/2003	3/11/2004	6/3/2004	1/31/2002	7/18/2002	1/30/2002	7/17/2002	12/04/2003	3/11/2004	6/3/2004	1/31/2002	7/17/2002	1/30/2002	7/17/2002	9/4/2002	9/4/2002	(D)	canup cours - Or	on-Residential Cleanup Goals - Groundwater (1)	peds the VRP Tier II	ceds the VRP Tree II
ple No.	165D	165D	G591	165D	GS91	165D	166D	-166D	G991-	D Duplicate	166D	G991	G/91	GL91	G/291	7D DUP	GL91	G(91	G891	G891	G691	G691	G691	G691	G691	170D	170D	171D	171D	172D	2D Dup.	oldsonial C	STOCHHALL	n-Residents	impound exc	

Table 10a

Deep Monitoring Well Groundwater Analytical Results for VOCs (ug/L)
Former General Motors Corporation
Allison Gas Turbine Division, Plant 10
Indianapolis, Indiana
IDEM VRP #6991004
KERAMIDA Project No. 2829E

Chloromethane	<10	<10	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10	<10	<10.	<10.	<10.	<10.	<5.0	<10	<10	<10.	<10.	<10.	<10.	<10.	<10.	NA.	NA.		
Chloroform	<5.0	65.0	<20	<20	<20	<20	<20	<20	<20	<20	<20	0.6>	6.0	<20	<20	<20	<20	<1.0	<5.0	65.0	<20	<20	<20	<20	<20	<20	100	468.9		
Chloroethane	<5.0																							<10.			23,161	NA		
Chlorodibrome- methane		6.0	6.0		F		0.0															6.0			6.0		NA.	NA		
Chlorobenzene	0.5	0.6	<5.0		<5.0		6.5						<5.0			6.0		<1.0				6.0	65.0	6.0	6.0	6.0	112 ⁽³⁾	2,040(2)		
Carbon tetrachloride	€5.0	6.0					€5.0															6.0		6.0			NA	NA		
Carbon disulfide	6.0						6.0											<1.0				0.0	1	6.0	5.0	6.0	1,060 ⁽²⁾	10,200@		
tert-Butylbenzene					P																			€.0			64(3)	1,020(2)		
sec-Butylbenzene			S.0 ×		S.0 k							1								NA		65.0			5.0	> 0.0	6400	1,020		
n-Butylbenzene													Z YZ					<1.0				S.0 ×			<5.0	< 0.0	640	1,020		
Bromomethane				<10.		<10.		<10.					V 010		<10.			> 0.5>						<10.	0.	10.	N.	N.A.		
Bromolorm																									> 0	<5.0	V.V.	NA		
перапе	0.5>																							0.650		9	0.289(2)	46.1(2)		
Bromochloromethano Bromodichloro-				0.50			0.60													75		0 <5.0			0 <5.0	0 6.0	NA 0	NA AN	100	
Bromobenzene		NA		0.5>	0				0.50				NA			1					100			0.00	0 6	0 <5.0	NA	NA		
Benzene		NA O					0 <5.0	100																0.65.0		0.0	5	9.86		
Acrylonitrile	650	<5.0																						0 <5.0			NA	NA		
Acrolein	NA	NA.	250	C250	<250	<250	<250	<250	<250	<250	<250	NA	ZZ	<250	<250		<250	<50.0	NA	Y.Z	<250	250	<250	<250	<250	7250	NA	NA.		
	NA	NA	250	250	<250	<250	<250	<250	<250	250	<250	NA	NA	VI <250	100 <250	110 <250	<250	48.6 <50.0	36 NA	NA	<250	<250	<250	<250	<250	<250	Н	H		
Acetone	2 <20			99	050	050	05>	05>	<50	05>	05>	1 <20	1 <20				<50		2	50	<50	<50	050	<50	050	<50	3,040	10,220		
Lab Sample No.	W5070229-02	W7020074-12	253804	253814	260576	260569	280703	296391	296392	324160	324161	WS070191-04	W7020074-2	253810	260580	280705	296400	324115	WS070191-05	W7020074-22	253797	260595	280706	280707	296406	324187			Cleanup Goal	
Screen Interval	45.50	45-50	45-50	45-50	45-50	45-50	45-50	45-50	45-50	45-50	45-50	36-38	36-38	36-38	36-38	36-38	36-38	36-38	33-35	33-35	33-35	33-35	33-35	33-35	33-35	33-35	oundwater (1)	- Groundwater (1)	II Non-Residential	
Date Sampled	2/17/1995	2/5/1997	11/23/1999	11/23/1999	2/29/2000	2/29/2000	11/8/2000	6/20/2001	6/20/2001	7/19/2002	7/19/2002	7/14/1995	2/6/1997	11/23/1999	2/29/2000	11/8/2000	6/20/2001	7/18/2002	7/14/1995	2/6/1997	11/23/1999	2/28/2000	11/8/2000	11/8/2000	6/21/2001	7/22/2002	ier II Residential Cleanup Goals - Groundwater (1)	er II Non-Residential Cleanup Goals - Groundwater (1)	ed compound exceeds the VRP Tier II Non-Residential Cleanup Good	Mary Land Land
Sample No.	MW-200	MW-200	MW-200	MW-200 Dup	MW-200	MW-200 Dup.	MW-200	MW-200	4W-200 Dup.	MW-200	MW-200 Dup.	MW-201	MW-201	MW-201	MW-201	MW-201	MW-201	MW-201	MW-202	MW-202	MW-202	MW-202	MW-202	MW-202 Dup.	MW-202	MW-202	II Residential C	I Non-Resident	ted compound ex	

Table 10a

Deep Monitoring Well Groundwater Analytical Results for VOCs (un/L.)
Former General Motors Corporation
Allison Gas Turbine Division, Plant 10
Indianapolis, Indiana
IDEM VRP #6991094
KERAMIDA Project No. 2829E

																t/n			4		4	
Chloromethane	<10	<10.	<10.	<10.	<10.	<10.	<10.	0.6	<10	<10.	<10.	<10.	<10.	<10.	< 5.0	z	< 5.0		NA	-	NA	
Chloroform	0.0	<20	<20	<20	<20	<20	<20	0.1>	0.6	<20	<20	<20	<20	<20	< 5.0	NS.	< 5.0		100		468.9	
Chloroethane									<10							SN	<5.0		23,161		NA	
Chlorodibromo- methane									6.0							SN	< 5.0		N.A		NA.	
Chlorobenzene									<5.0			<5.0			< 5.0	SN	< 5.0		11200	6	2,040	
Carbon tetrachloride		0.							<5.0 <							SN	<5.0		NA		NA.	
Carbon disulfide	<5.0		65.0						5.0							NS	< 5.0		1,060 ⁽²⁾	10	10,200**	
tert-Butylbenzene		5.0							NA AN			5.0 ×				SN	< 5.0	1000	64(2)	-	1,020,1	
sec-Butylbenzene		5.0	6.0		7				NA						< 5.0	NS	< 5.0		64(3)	0	1.020	
n-Butylbenzene									NA NA			5.0				NS	5.0	THE PARTY OF	64(2)	0	1,020,1	
Bromomethane	10 N								<10 N			1				NS	< 5.0		NA		NA	
вгопоготп									<5.0			<5.0			5.0	SN	< 5.0		NA		NA	
Bromodichloro- methane															< 5.0	NS	-		0.289(2)		46.1	
Вготосијоготенвав	Ŷ	0							1 5.0		1		0.5> 0.				<5.0 <5.0		NA C	-	NA	
Bromobenzene		<5.0 <5							AN NA						< 5.0 < 5.0		< 5.0		NA		NA	
Benzene	<5.0 NA	5.0	<5.0 <5.0						<5.0 NA						< 5.0 <		< 5.0 <		5		98.6	
Acrylonitrile	A								NA								< 100 <		NA		NA	
Acrolein	Z														<100		< 100 <		NA		NA	
Acetone	YZ	4250			<250					C250									3,040		10,220	
e.	7 <20	<50	0\$>	050	<50	<50	05>				<50	<50	05>	<50	< 100		001 >		6.0	-		
Lab Sample No.	W7020074-17	253808	260578	280708	280709	296396	296397	324113	W7020074-18	253795	260593	280710	296403	324186	503002719	SN	503518110				1	Kunup com
Screen Interval	45-50	45-50	45-50	45-50	45-50	45-50	45-50	45-50	45-55	45-55	45-55	45-55	45-55	45-55	45-55	45-55	45-55		roundwater (1)		s - Groundwater	II NOD-RESIDENTIAL
Date Sampled	2/6/1997	11/23/1999	2/29/2000	11/8/2000	11/8/2000	6/20/2001	6/20/2001	7/18/2002	2/6/1997	11/23/1999	2/28/2000	11/8/2000	6/21/2001	7/22/2002	12/03/2003	3/11/2004	6/11/2004		Tier II Residential Cleanup Goals - Groundwater (1)		Tier II Non-Residential Cleanup Goals - Groundwater	closed compound exceeds the VKP life it won-residential champ over
Sample No.	MW-301	MW-301	MW-301	NW-301	MW-301 Dup.	MW-301	MW-301 Dup.	MW-301	MW-302	MW-302	MW-302	MW-302	MW-302	MW-302	MW-302	MW-302	MW-302		er II Residential		r II Non-Reside	Cottod collingsonness

Table 10a
Deep Monitoring Well Groundwater Analytical Results for VOCs (tag/L.)
Former General Motors Corporation
Allison Gas Turbine Division, Plant 10
Indianapolis, Indiana
IDEM VRP #6991004
KERAMIDA Project No. 2829E

R	ef	er	en	ıce	30	6

Significable Color	Samole No.	Date Sampled	Screen Interval	Lab Sample No.	2-Chlorotoluene	-Chlorotoluene	2-Chloroethyl vinyl	-£-omordiG-£,1	1,2-Dibromoethane (BGB)	Dibromo-methane	1,2-Dichloro-benzene	J-3-Dichloro-benzene	9n-schloro-benzene	Dichloro-difluoro- methane	-C-oroldoid-b ₁ l-snert butene	1,1-Dichloroethane	1,2-Dichloroethane	1,1-Dichloroethene	cis-1,2-Dichloroethene	trans-1,2. Dichloroethene	1,2-Dichloro-propane	1,3-Dichloro-propane	2,2-Dichloro-propane	1,1-Dichloro-propene
Signification Coli	W-165D	1/30/2002	42-47	312999	65.0	0.50										83	5.0	1	3300					5.0
Significaçies C.S.O. C.S	GS91-W1	7/18/2002	42-47	324109	0.1>	0.1>	65.0	<5.0	6.0			9			5.0	× 6.9	1.0	4.2	2,820	> 9.6	1.0	> 0.1		1.0
Signification Caro	MW-165D	12/05/2003	42-47	503002651	<5.0	<5.0	< 50.	< 5.0	<5.0						100	6.2 <	5.0	6.7	2,700	12 <				5.0
State Stat	MW-165D	3/11/2004	42-47	503237075	<5.0	<5.0	< 50.	< 5.0									5.0	6.2	2,300	> 91				5.0
Strong California Califor	IW-165D	6/3/2004	42.47	503493041	<5.0	< 5.0	< 50.	<5.0										5.0	2,000	8.8				5.0
Signor S	IW-165D	6/3/2004	42-47	503493041	<5.0	<5.0	< 50.	< 5.0										5.0	2,000	8.8			8	5.0
Statistical Color Color	1W-166D	1/31/2602	46-51	313000	050	0.50	<50.	<50.									5.0	6.1						5.0
Stitution Stit	4W-166D	2/18/2002	46-51	324107	<1.0	0.15	6.0	<5.0	65.0								1.0	5.1		3.3				1.0
Signification Significatio	4W-166D	1/6/2004	46.51	503070204	080	<50	650	<5.0	650									5.0	2,000	V 11				5.0
Signification Significatio	66D Dunlicate	1/6/2004	46-51	503079212	080	050	990	<5.0	65.0	T							İ	5.0	1,700	7.9				5.0
Stationary C.S.D.	4W-166D	3/11/2/DA	16-51	503232050	057	050	< 50	057	I	T								5.0		П				5.0
313002 5.0 5	(MA-166D)	PUUC/E/9	46.51	503402077	650	<50	< 50	<5.0										5.0						5.0
33,000	AUDI 1675	1731207003	20 33	213006	VY	0.37	100	750	T	T	T		T	T	T			20				Г		5.0
Strongloss Str	G/01-M1	1/31/2002	79-33	STORES	0.0	0.0	500.	500.	T	T	T		I	T	T		T	0.0	274			T	T	1.0
Stationary State	dW-167D	7/17/2002	28-33	324025	0.1>	0.1>	0.0	0.0	1			Ì		T				0.1	177	7	T	T	I	5.0
String String	dW-167D	12/04/2003	28-33	503002677	<5.0	<5.0	< 50.	< 5.0						T				0.0	380	V	I		T	0.00
Strigard Carro C	7-167D DUP	12/04/2003	28-33	503002685	<5.0	< 5.0	< 50.	< 5.0										5.0	390	V				0.0
Stationary Sta	dW-167D	3/11/2004	28-33	503237091	<5.0	<5.0	< 50.	< 5.0		Ì			Ų					5.0	410	V ***				5.0
3139044 \$\isign 0.0 \$\is	dV-167D	6/3/2004	28-33	503493207	<5.0	<5.0	< 50.	< 5.0										5.0		2				5.0
324112 C 0	4W-168D	1/31/2002	26-31	313004	65.0	65.0	<50.	<50.										5.0	> 81					5.0
312996 \$50 \$60 \$	TW-168D	7/18/2002	26-31	324112	<1.0	0.1>	0.0	65.0										1.0	21 <					1.0
324020 \$1.0 \$5.0 \$5.0 \$5.0 \$5.0 \$1.0	G691-MF	1/30/2002	32-37	312996	0.50	65.0	<50°.	<50.																5.0
Strong C	G691-WM	7/17/2002	32-37	324020	<1.0	0.1>	65.0	65.0																1.0
Statistical Statistics Statistical Statistics Stati	G691-WV	12/04/2003	32-37	503002701	<5.0	<5.0	<50.	< 5.0	-	Ť														5.0
Signatorial Signature Sign	G691-WW	3/11/2004	32-37	503237034	<5.0	<5.0	< 50.	< 5.0	< 5.0	ĺ														5.0
313001 \$5.0 \$5.0 \$6.0	G691-WIW	6/3/2004	32-37	503493082	< 5.0	<5.0	< 50.	< 5.0	< 5.0	Ť														:5.0
334024 \$(1.0 \$<1.0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0 \$<0	MW-170D	1/31/2002	34-39	313001	65.0	65.0	<50.	~20.	<5.0	Ť							Ĭ							5.0
312958 550 550 550 550 510 550 510 550 5	MW-170D	7/17/2002	34-39	324024	0.1>	0.1>	<5.0	0.5	<5.0															0.15
71/7/2002 44-49 324022 41.0	MW-171D	1/30/2002	44-49	312998	6.0	0.50	<50.	<50.	65.0															5.0
327654 61.0 61.0 65.0 65.0 65.0 61.0 61.0 61.0 61.0 61.0 61.0 61.0 61	MW-171D	7/17/2002	44-49	324022	<1.0	<1.0	65.0	65.0	<5.0			1.0	1.0	× 0.1>		1.0	1.0	1.0	1.0	> 0.15	1.0	<1.0	1.0	0.15
327655 (1.0 (4.1	MW-172D	9/4/2002	33-38	327654	<1.0	<1.0	<5.0	65.0	<5.0			1.0	0.15	A 0.15		0.13	1.0				1.0	<1.0	1.0	0.13
NA NA NA NA NA NA NA NA NA NA NA NA NA N	V-172D Dub.	9/4/2002	33-38	327655	0.1>	0.1>	65.0	<5.0	<5.0							0.15	1.0				1.0	<1.0	1.0	0.1
NA NA NA NA NA NA NA NA NA NA NA NA NA N							The second	THE REAL PROPERTY.				1		THE REAL PROPERTY.		THE REAL PROPERTY.	-		The second	N 100	1			
pr. ⁽¹⁾ NA NA NA NA NA NA NA NA 19,198 NA 119,2 NA NA 10,220 31,4 7 1,022 2,040 ⁽²⁾ NA 128.6 ⁽²⁾ NA 28.6 ⁽²⁾ NA 119,2 NA NA 10,220 N	II Residential C	Teanup Goals - G	roundwater (1)		NA	NA	NA	NA	NA	NA	009	009	75	NA	NA	640	5	7	7.0	128(7)	NA		0.850(2)	NA
NA NA NA NA NA NA NA NA 119.2 NA NA 10,220 31.4 7 1,022 2,040 ²³ NA NA 28.6 ⁶⁷³ NA 120 6001				SOUTH PROPERTY.				THE PARTY			THE REAL PROPERTY.				200									
led companie exceeds the VRP Tree II Nove Residential Cleaning Goal and companies exceeds the VRP Tree II Residential Cleaning Goal in Companies to the VRP Tree II Residential Cleaning Goal in Companies to the VRP Tree II Residential Commun Goal	II Non-Resident	ial Cleanup Goal	ls - Groundwater	0	NA	NA	NA	NA	NA	NA	9,198	NA	119.2	NA	NA	10,220	31.4	7		2,040 ²¹	NA	NA	28.6(2)	NA
S DE	ted compound ex	ceds the VRP Tie	r II Non-Residential	Cleanup Goal																				
A STATE OF THE PROPERTY OF THE		cecils the VKF Tie	r II Kesidential C.E.																					

Table 10a
Deep Monitoring Well Groundwater Analytical Results for VOCs (tagl.)
Former General Motors Corporation
Allison Gas Turbine Division, Plant 10
Indianapolis, Indiana
IDEM VRP #6991004
KERAMIDA Project No. 2829E

										1	7	_	T	T	T	T		7		T		T	T	T	T				fe) r
nsqorq-oroldsiQ-1,1	NA	NA	<5.0	<5.0	<5.0	<5.0	<5.0	65.0	0.50	0.50	0.50	NA	NA	0.50	0.50	<5.0	0.50	<1.0	NA	NA	0.5	0.00	0.00	0.0	0.0	200	N.	NA.		
2,2-Dichloro-prop	NA	NA	0.5>	6.0	<5.0	<5.0	0.5>	0.5>	<5.0	65.0	0.50	NA	NA	0.5	0.5	0.6>	0.50	<1.0	NA	NA	<5.0	0.0	0.0	0.0	0.0	0.00	0.850 ⁽²⁾	28.6(2)		
1,3-Dichloro-pro		NA	<5.0	<5.0				-				NA									0.0	5.0	0.0	0.0	0.0	0.0	NA	N.N.		
nqorq-oroldsid-2,1		5.0										<5.0													0.0		NA	NA.		
trans-1,2. Dichloroethene					> 0.5																		I	T	0.0		128 ^{CD}	2 040(2)		
cis-1,2-Dichloroethe		0.00			<5.0			<5.0 ×		<5.0			0.50												0.0		02	1 000		
1,1-Dichloroethene	Ť	5.0		5.0			<5.0					S.0 <								5.0		0.0			0.0		7	1		
1,2-Dichloroethane																5.0		0.1>					T		T	0.0	5	11.4		
1,1-Dichloroethane	0.0	0.0	0.50						0.50															T			040	0,000		
trans-1,4-Dichloro-2- butene		65.0										0.0										0.50			Ì	0.00	NA	NA.		
-oroufibro-difluoro- methane	Z	AZ			050							NA.															NA	NA.		
-hichloro-benzene	Z				01>							NA										01>			01>		75	110.2		
anazuadan inmardaci		<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10			920	<5.0	<5.0	<1.0	<10	<10	<5.0	0.50	0.0	0.00	0.00	0.0	009	NA		
ənəxnəd-oroldəi'D-E,l	<10	<10	65.0	650	6.0	0.50	0.50	6.0	65.0	0.50	65.0	<10	<10	65.0	65.0	0.50	65.0	<1,0	<10	<10	65.0	65.0	0.0	020	0.0	0.0	H	H	-	
1,2-Dichloro-benzene	<10	01>	65.0	6.0	65.0	65.0	65.0	65.0	<5.0	65.0	<5.0	<10	<10	<5.0	0.50	<5.0	<5.0	<1.0	<10	<10	<5.0	<5.0	<5.0	<5.0	<5.0	0.6>	009	0 108	1	
Dibromo-methane	Z	YZ	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	AN	VV	<10.	<10.	<10.	<10.	<1.0	NA	VV	<10.	<10.	×10.	<10	<10.	<10.	NA	2		
t,2-Dibromoethane	NA	NA	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA	NA	<5.0	<5.0	<5.0	<5.0	<5.0	NA	NA	<5.0	<5.0	<50	0.50	200	0.50	NA	N.		
-£-omordid-£,1 ansqorqorold:		NA	50.	<50.	<50.	<50.	<50.	<50.	<50.	<50.	<50.	NA	NA	<50.	<50.	<50.	<50.	0.6>	NA	NA	<50.	<50.	<50.	- Q0	- 20°	<50.	NA	12		
chloroethyl vinyl		<10	-50.	-50.	-50.	-90	-50,	-50.	-20.	<50.	<50,	01>	<10	<50.	<50.	<50.	<50.	6.0	<10	<10	<50.	€0.	- 20.	-20,	- 20.	-S0.	NA	NA		
f-Chlorotoluene	NA	NA	65.0	<5.0	0.5>	<5.0	0.5>	<5.0	<5.0	<5.0	<5.0	NA	NA	<5.0	0.5>	0.5	0.5	0.1>	NA	NA	0.5	0.5	0.5	0.50	0.5	0.0	NA	Y.N		
3-Chlorotoluene	NA	NA	<5.0	<5.0	<5.0	<5.0	<5.0	0.5	6.0	65.0	0.5	NA	NA	65.0	0.5	0.5	0.5	<1.0	NA	NA	0.5>	<5.0	0.5	0.5	0'5	<5.0	NA	NA		
Lab Sample No.	W5070229-02	W7020074-12	253804	253814	260576	260569	280703	296391	296392	324160	324161	W5070191-04	W7020074-21	253810	260580	280705	296400	324115	WS070191-05	W7020074-22	253797	260595	280706	280707	296406	324187			Teathup Goal	op Goal.
Screen Interval	45-50	45.50	45-50	45.50	45.50	45-50	45-50	45-50	45-50	45-50	45-50	36-38	36-38	36-38	36-38	36-38	36-38	36-38	33-35	33-35	33-35	33-35	33-35	33-35	33-35	33-35	roundwater (0)	Commentment (1)	II Non-Residential C	II Residential Class
Date Samoled	7/17/1905	2/5/1907	11/23/1999	11/23/1999	2/29/2000	2/29/2000	11/8/2000	6/20/2001	6/20/2001	7/19/2002	7/19/2002	7/14/1995	2/6/1997	11/23/1999	2/29/2000	11/8/2000	6/20/2001	7/18/2002	7/14/1995	2/6/1997	11/23/1999	2/28/2000	11/8/2000	11/8/2000	6/21/2001	7/22/2002	II Residential Cleanup Goals - Groundwater	(1) The state of t	secods the VRP Tier II	Below the VRP Tier
owner No.	MW-200	MW-200	MW-200	W-200 Dan	MW-200	W-200 Dup.	MW-200	MW-200	W-200 Dup.	MW-200	W-200 Dup.	MW-201	MW-201	MW-201	MW-201	MW-201	MW-201	MW-201	MW-202	MW-202	MW-202	MW-202	MW-202	W-202 Dup.	MW-202	MW-202	II Residential	Non Davidan	ed compound e	

Table 10a
Deep Monitoring Well Groundwater Analytical Results for VOCs (ug/L)
Former General Motors Corporation
Allison Gas Turbine Division, Plant 10
Indianapolis, Indiana
IDEM VRP #6991004
KERAMIDA Project No. 2829E

1,1-Dichloro-propene	NA	6.0	6.0	6.0	<5.0	<5.0	<5.0	<1.0	NA	<5.0	<5.0	<5.0	<5.0	<5.0	< 5.0	NS	< 5.0		NA		NA		
2,2-Dichloro-propane	NA				1								<5.0			S	< 5.0	100	0.850		28.6(2)		
1,3-Dichloro-propane	NA.						700						0.5>		< 5.0	NS	< 5.0		NA		NA		
1,2-Dichloro-propane	65.0												<5.0			5	< 5.0		NA		NA		
trans-1,2. Dichloroethene		<5.0	6.0	6.0				<1.0								001	< 5.0		128(4)		2,040(2)		
cis-1,2-Dichloroethene	6.0	6.0	6.0	6.0				<1.0	8.2	<5.0		6.0		9	< 5.0	NS	< 5.0		70		1,022		
J.I-Dichloroethene	<5.0	<5.0		65.0				<1.0	6.0		6.0	6.0		65.0	< 5.0	NS	< 5.0		7		2		
J.2-Dichloroethane	<5.0	<5.0		<5.0				<1.0						6.0		SN	< 5.0		5		31.4		
J.I.Dichloroethane	6.0												€.0			NS	< 5.0		040		10,220		
-2-orold-bid-bid-oro-2-								5.0					-S0 <		< 100	200	<100		NA		NA		
Dichloro-difluoro- methane								<1.0					<10		< 5.0	NS	< 5.0		NA		NA		
anaxnad-ovoldaid-4,1	<10 N							<1.0				7		<5.0	< 5.0	SZ	< 5.0		75		119.2		
anaxnad-oroldaid-£,l																NS	< 5.0		009		NA		
J.2-Dichloro-benzene	(10)	0.50						0 <1.0						0.65.0	0.5> 0.	NS		-	009		861.6		
Dibromo-methane		0.50											0.5		0.5>	NS	0.6 < 5.0		NA		NA ,		
(EDB)													.0 <10.		0.5>	NS	0.5 < 5.0		NA		NA		
-E-omordid-2,1 chloropropane	Z							0 <5.0							.0 < 5.0	NS	.0 < 5.0		NA		NA		
cther	Z	000			<50.					<50.	No.				< 5.0	NS	< 5.0		NA		NA	ľ	
4-Chlorotoluene 5-Chloroethyl vinyl	<10			900				65.0			<50.				(<50.	NS I	<50.		NA		NA P		
2-Chlorotoluene	Z	0.50				Г								650	0 < 5.0	NS N	< 5.0		NA N	The state of the s	NA N		
	X								00	<5.0				<5.0	19 <5.0	1	0 < 5.0		4		de .		
Lab Sample No.	W7020074-17	253808	260578	280708	280709	296396	296397	324113	W7020074	253795	260593	280710	296403	324186	503002719	SN	503518110					Teamup Goal	
Screen Interval		45-50	45-50	45-50	45-50	45-50	45-50	45-50	45-55	45-55	45-55	45-55	45-55	45-55	45-55	45-55	45-55		coundwater (1)		Fier II Non-Residential Cleanup Goals - Groundwater (1)	betected compound exceeds the VRP Tier II Non-Residential Cleanup Goal	
Date Sampled	2/6/1997	11/23/1999	2/29/2000	11/8/2000	11/8/2000	6/20/2001	6/20/2001	7/18/2002	2/6/1997	11/23/1999	2/28/2000	11/8/2000	6/21/2001	7/22/2002	12/03/2003	3/11/2004	6/11/2004		Tier II Residential Cleanup Goals - Groundwater (1)		tial Cleanup Goals	ceeds the VRP Tier	ound exceeds the VKP Tier II Residential
Sample No.	MW-301	MW-301	MW-301	MW-301	MW-301 Dup.	MW-301	MW-301 Dun.	MW-301	MW-302	MW-302	MW-302	MW-302	MW-302	MW-302	MW-302	MW-302	MW-302		er II Residential C		rr II Non-Residen	tected compound ex	

Table 10a
Deep Monitoring Well Groundwater Analytical Results for VOCs (ug/L)
Former General Motors Corporation
Allison Gas Turbine Division, Plant 10
Indianapolis, Indiana
IDEM VRP #6991004
KERAMIDA Project No. 28.29E

Tetrachloro-ethene	<5.0	<1.0	< 5.0	< 5.0	< 5.0	< 5.0	<5.0	<1.0	<5.0	<5.0	< 5.0	< 5.0	<5.0	<1.0	< 5.0	< 5.0	< 5.0	< 5.0	<5.0	<1.0	65.0	<1.0	< 5.0	< 5.0	< 5.0	0.5	<1.0	0.50	<1.0	<1.0	<1.0		5	56.1	
-orofdseriet. 1,1,2,2-Tetrachloro-	6.0	<1.0	< 5.0										<5.0	<1.0	<.5.0	< 5.0	< 5.0	< 5.0	6.0	<1.0	65.0	<1.0	< 5.0	< 5.0	< 5.0	6.0	<1.0	<5.0	<1.0	<1.0	<1.0		2	14.3	
1,1,1,2-Tetrachloro- ethane	0.5	<1.0	< 5.0			< 5.0				-								< 5.0		<1.0		<1.0	< 5.0	< 5.0	< 5.0	0.6>	<1.0	<5.0	<1.0	<1.0	<1.0		5	110	
Біутепе	0.50	<1.0	< 5.0	< 5.0	< 5.0	< 5.0	0.5		0.5	<5.0		< 5.0	100	<1.0					0.0	9			< 5.0						<1.0	61.0	<1.0		NA	NA	
ansznad-lygor4-n		<1.0	< 5.0	< 5.0	< 5.0		<5.0					< 5.0	<5.0	<1.0					<5.0	1								6.0	1.0	1.0	1.0		64(2)	1,020'21	
Paraldehyde			< 5.0 <	< 5.0	NA AN		NA AN	VA V			0	NA AN					0	NA A			NA AN				VA				AA <	NA AN	AA A		NA	NA	
onoladidaeN.		6.0 N	<10.	~	< 5.0		5.0 N	0.50				<5.0	0.5	6.0					5.0									S.0 N	6.0	S.0	5.0		1,216	4.088	
4-Methyl-2-pentanone		100	<10.	NA AN		< 10.	-50,	<12.5				< 10.		<12.5				< 10.		5		2				-20.	12.5	50.	12.5	12.5	<12.5		1,520	5,110	
(MLBE) Metph-tett-putyl ether	Ť										<5.0							< 5.0					0	<5.0			0.	0,	0.	0.	<5.0 k		45	715	
(MEK)	V	0	0. <5.0								1	1	0. <10.	<12.5	-			255				<12.5 <5						0. <10.	2.5 <5.0	<12.5 <5.0			917.72	5,110	
Methylene chloride	0		<5.0 <10.	<5.0 < 10.		<5.0 < 10.	<10. <50.	<5.0 <12.5	6.0 <5.0	<5.0 <5.0	<5.0 <1	<5.0 < 10.	<10. <50.	5.0 <1				<5.0 < 10.	<10.						<5.0 < 10.		<5.0 <12.	<10. <50.	1> 0"	1> 0.0	.0 <12.5		6.30(2) 9	38100	
p-Isopropyl-toluene	101							-																			0		0	0	0		NA	NA	
[sobropy]-benzene	0.50		0 <5.0	0 <5.0		0 <5.0			0.650	0 <5.0	0.6 < 5.0	0.6 < 5.0	0 <5.0					0.6 < 5.0	0 <5.0						0.6 < 5.0	0 <5.0	0 <1.0	0 <5.0	0 <1.0	0	0		(2689	10,2000	
lodomethane	<5.0		0.5 < 5.0	0.5 > 0.0			0.00	0.1>	0.50		0.5 > .0	0.5 < 5.0	0.50	0.1>				0.5 < 5.0	0.50	Ì	Ì				0. < 5.0		0.1>	0.50	0 <1.	0 <1.	0		NA 6	NA 10,	
Hexachloro-butadiene	0 <10.		<5.0 < 10.	<5.0 < 10.				0.6>0.0	0 < 10.	0 < 10.	<5.0 < 10.	<5.0 < 10.	.01 <10.	0.65	< 5.0 < 10.	<5.0 < 10.	<5.0 < 10.	<5.0 < 10.	.01 <10.	5.0 <5.0	<5.0 <10.	65.0	< 5.0 < 10.	İ	< 5.0 < 10.	<5.0 <10.	0.6> 0.0	.01> <10.	0.6> 0.	0.	<5.0 <5.0		10	36.7	
9nonex9H-2	SO. S	<12.5 <5.0	<10. <5			<10. <5.0	<50. <5.0	<12.5 <5.0	<10. <5.0	<10. <5.0	<10. <5	<10. <5	<50. <5.0	<12.5 <5.0	<10.	<10.	<10.	< 10. < 5	<50, <5.0	S	<50. <5	<12.5	< 10.	<10. <.	10.	v	<12.5 <5	50. <5.0	2.5	2.5 <5	<12.5 <5		NA	NA	
Ethyl methacrylate		Г		<100 <				> 0.5>	< 100 <	< 100 <	< 100 <	< 100 <	<10.	> 0.5>				< 100 <	<10.		<10.	> 0.5>		Ť	< 100 >	Ť	<5.0 <	Ť	> 0.5>	5.0	> 0.5>		NA	NA	
Ethylbenzene								<1.0	S.0 ×	S.0 ×	< 5.0	< 5.0	> 0.6	<1.0 ×	< 5.0			< 5.0	S.0 ×	<1.0	o.0		< 5.0		< 5.0	<5.0	1.0	S.0 ×	1.0	0.0	0.1		200	10,220	
Ethyl Acetate			NA A		NA A			NA AN	NA A	7	NA NA		NA	NA	NA A	NA	NA AN	NA AN	NA	NA NA	NA AN	NA AN	NA		NA <		NA AN	NA ×	NA.	NA	NA		NA	NA	
rans-1,3-Dichloro- propene		I			Г			<1.0	6.0	6.0	< 5.0	c5.0	65.0	<1.0 P	<5.0	<5.0	< 5.0	< 5.0	6.0	<1.0	6.0		< 5.0		<5.0	5.0	<1.0	6.0	1.0	0.15	0.15	ı	NA	NA	
cie-L ₁ 3-Dichloro- propene							T	<1.0			< 5.0		S.0 ×	<1.0	< 5.0	< 5.0 ×	< 5.0		5.0	<1.0	<5.0		< 5.0		< 5.0	> 0.5>	<1.0	<5.0	1.0	0.13	<10		NA	NA	
ple No.	1			100									Г					-	313004		312996 -			1				312998	324022 <	327654					ical
Lab Sample No.	312999	324109	50300265	50323707	50349304	50349304	313000	324107	503079204	503079212	503237059	50349297	313005	324025	50300	503002685	50323709	503493207	313	324	312	324	50300270	50323	503493082	313001	324	312	324	327	327			(0)	Cleanur Ge
Screen Interval	42-47	42-47	42-47	42.47	42-47	42-47	46-51	46-51	46-51	46-51	46-51	46-51	28-33	28-33	28-33	28-33	28-33	28-33	26-31	26-31	32-37	32-37	32-37	32-37	32-37	34-39	34-39	44-49	44-49	33-38	33-38		roundwater (1)	s - Groundwater	Il Non-Recidential
Date Sampled	1/30/2002	7/18/2002	12/05/2003	3/11/2004	6/3/2004	6/3/2004	1/31/2002	7/18/2002	1/6/2004	1/6/2004	3/11/2004	6/3/2004	1/31/2002	7/17/2002	12/04/2003	12/04/2003	3/11/2004	6/3/2004	1/31/2002	7/18/2002	1/30/2002	7/17/2002	12/04/2003	3/11/2004	6/3/2004	1/31/2002	7/17/2002	1/30/2002	7/17/2002	9/4/2002	9/4/2002		Teanup Goals - G	er II Non-Residential Cleanup Goals - Groundwater	red connound exceeds the VRP Tier II Non-Residential Cleanur Goal
Samole No.	G591-MM	GS91-MW	G591-MM	MW-165D	MW-165D	MW-165D	MW-166D	MW-166D	MW-166D	W-166D Duplicate	MW-166D	MW-166D	MW-167D	MW-167D	MW-167D	MW-167D DUP	MW-167D	MW-167D	MW-168D	MW-168D	MW-169D	MW-169D	G691-MM	MW-169D	G691-MM	MW-170D	MW-170D	MW-171D	MW-171D	MW-172D	MW-172D Dun.		ier II Residential Cleanup Goals - Groundwater (1)	r II Non-Resident	seted compound ex-

last page for footnotes.

Table 10a
Deep Monitoring Well Groundwater Analytical Results for VOCs (ug/L)
Former General Motors Corporation
Allison Gas Turbine Division, Plant 10
Indianapolis, Indiana
IDEM VRP #6991004
KERAMIDA Project No. 2829E

																													R	eference 36 Page 19
etrachloro-ethene	L	I		0			I	I					I				0	0			I			T	I	T			5	1,020 ²³ NA 110 14.3 56.1 Table 10s Deep Monitoring Well Groundwater - VOCs Page 8 of 12
	3		Ö	S.	5	5	Y	7 4	200	Y	7	200	1	5.0	<50	10	30	50	<1.0	4	250	250	200	Y	7 (5	10		H	Page
-oroldseris-T-2,2,1,		0	0.0	0.50	<5.0	65.0	0.50	200	0 90	200	0.00	200	0 50	65.0	989	0.50	65.0	65.0	<1.0	0 50	0.0	200	200	3 9	99	080	0.50		8	rell-Groum
-oroldastratil, ansdr			NA	<5.0	<5.0	920	050	000	200	200	200	200	NA	NA	9	<50	0.50	<50	<1.0	VV	NA	050	000	000	200	050	0.55		S	110 roting W
iyrene	S	0.00	0.0	5.0	0.5	0.5	0.5	0.0	0.5	0.0	0.0	080	0.5	0.8	050	5.0	5.0	5.0	<1.0	0.5	0.5	000	0.0	0.0	2.0	0.5	65.0		N.A.	NA Mon
-Propyl-benzene								T	T				T							T	T	T	T	T			0		64 ⁽²⁾	1,020 ⁽²⁾
		1000	N	40	35	7	7	0.0	1 4) (7	7 (0)	12	Z Z	050	0.50	65.0	Q	<1.0	2	42	940	2 4	ý Y	1	7	V		Н	
araldehyde.	Z	1000	NA	VA	NA	NA	VN	NA	NA.	NA	V.V	NA	NA.	NA	NA	N.A.	NA	NA	NA	NA	NAN	NA	N.A.	NA	NA	NA	NA		6 NA	Z Z
enplithalene	N VN	0	<z< td=""><td>0.00</td><td>089</td><td>080</td><td>O.Y.</td><td>0.0</td><td>204</td><td>200</td><td>9 9</td><td>200</td><td>2</td><td>NA.</td><td>0.50</td><td>050</td><td><5.0</td><td>050</td><td>65.0</td><td>V.</td><td>2</td><td>08/</td><td>200</td><td>0.0</td><td>200</td><td>780</td><td>25.0</td><td>The same</td><td>1,216</td><td>80.4</td></z<>	0.00	089	080	O.Y.	0.0	204	200	9 9	200	2	NA.	0.50	050	<5.0	050	65.0	V.	2	08/	200	0.0	200	780	25.0	The same	1,216	80.4
MIBK) -Methyl-3-pentanone		100	000	050	052	050	050	200	700	.000	200	100	200	000	050	<50.	<50.	<50	<12.5	20	200	020	100	C30,	750	050	<50.	THE REAL PROPERTY.	1,520	2110
MLBE) qetph-tett-putyl ether				-															0										45	715
MEKO	12	013	NA	01>	210	210	1017	VIO.	710	710	V	710	N.V.	NA	710	<10	<10	<10	5	NA	NAN	710	017	OI V	710	127	<10		72	
dethyl-ethyl-ketone		700	<20	<50.	050	080	200	200	200	750	200	750	200	200	750	<50	<50	<50	<12.5	200	200	200	200	000	200	780	200		917.72	011.2
fethylene chloride	NOY	200	0.50	<10.	012	012	10	SIO.	1010	710	VIO.	VIO.	1	2000	710	<10.	<10.	<10	<5.0	Y	2 4	10	VIO.	VIO.	VIO.	10	<10.		6.30(2)	<u>88188</u>
-lsopropyl-toluene	d	N.	NA.	5.0	20	20	0.0	0.0	0.0	0.0	0.0	0.0	NA.	NA	200	6.0	6.0	0.50	0.15	N.A.	VA.	0 50	0.0	0.0	0.0	0.50	6.0		NA	½
sobropyl-benzene		0	NA AN	5.0	5.0	0.50	0.50		0.0	0.0	0.0		NA		0	5.0	5.0	050	0.13	VA	NA	050	0.0	0.0	0.0	200	65.0	STATE OF	(9689	10,200
эшкірэшоро	I			0.	0			000	500	000							0	0	6.0	Í				0.0	10.	0			NA	₹ _N
lexachloro-butadiene	н		NA	0	0	7	7 0	2	200	200	T	0 010	T	NA			0	0 <10	0	NA.	NA AN			0.0	V V	01/10	0		01	36.7
-Нехапопе		Ī	NA		150	T	T		0.0			200	T		T		5	7	5	N	NA	N. Y		0 4	0 4	7 (00		NA	5
	2	250			1		200	000	000	200	00	200	200	200	209	250	250		<12	ı	200	030		00		760	000		Н	一种 医二分分析 医动脉管 化多种
thyl methaerylate	2	V	NA	<10.	710	710	710	VIO.	×10.	STO.	VI VI	VIO.	NA	NAN	710	<10	<10	V10	250	VN	NA	NA CALL	×10.	VIO.	VIO.	710	<10.		NA	N O
hylbenzene	E	0.0	0.0	<5.0	0.50	0.50	200	0.0	0.0	0.0	0.0	0.0	0.50	200	26.0	0,0	000	000	0 12	0.30	9 9	0.0	0.0	0.0	0.0	200	0.00		700	10,220
друј Асецаје	E	VV	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	MA	VV	MA	NA	NA	NA	NA	NIA	NA	MA	WW	NA	NA	NA	NA		NA	Z
rans-1,3-Dichloro-		0.0	5.0	5.0	6.0	0.5	0.0	0.0	0.0	0.0	0.0	000	200	5.0	6.0	200	5.0	0.5	012	0.30	0.0	0.0	2.0	0.0	0.0	200	0.50		Y.Y	₹
s-1,3-Dichloro-	d	2	> 0		T	T	T		T	T	T	T	T	T	T	T	T			T	T	T	T		T	T	T		NA	V _N
	1	70	12 <5	<5.0		Ī		0.0	T		I	0.0	300	3 10	14	200				Т	0.00	77	I	T	T	T	0.0		Н	
	Lab Sample No	W30/0229	W7020074-1	253804	253814	350576	075007	69CD97	20/082	166062	266962	324100	MENSOROL	W7000074	053610	260580	280708	296400	324115	WEGGGGGG OC	ACOOCOCA.	4/07/07/W	203191	266092	280706	306406	324187			amp God God
Screen Interval	(leet)	45-20			45.50	45.50	45-30	45-50	45-50	45-50	43-50	45-50	1	+	36.36	36.38	36.38	36.38	36.38	+			33-33	33-35	33-33	33.35	33-35		roundwater (1)	up Coals - Groundwater (1) VRF Ter II Norskeldschild Comp VRF Ter II Residentia Clema VRF Ter II Residentia Clema
	Date Sampled	111111993	2/5/1997	11/23/1999	11773/1000	27000000	20202000	2/29/2000	0007971	0/20/2001	2710/2001	2007000	2012/1002	2/4/1907	11703/1000	00000000	11/8/2000	10000000	2/18/2002	2/14/1006	2001302	16617077	6661/67/11	2/28/2000	11/8/2000	10007011	7/22/2002		Tier II Residential Cleanup Goals - Groundwater (1)	Clean de the
	Sample No.	007-MW	MW-200	MW-200	MW. 200 Dan	AND DOOR	MAN AND PART	MW-200 Dup.	MW-200	MW-200	MW-200 Dup.	MW-200	ANT COLD Day.	MW-201	MAN OUT	MW-201	MW-201	MW-201	MW-201	NAW OOD	MW-202	707-MW	707-MW	MW-202	MW-202	MANY 202 Dup.	MW-202		ier II Residential	Tier II Non-Residential Descrict compound excellented compound excellented compound at the See list page for footpotte

Table 10a

Deep Monitoring Well Groundwater Analytical Results for VOCs (ug/L)
Former General Motors Corporation
Allison Gas Turbine Division, Plant 10
Indianapolis, Indiana
IDEM VRP #6991004
KERAMIDA Project No. 2829E

Sample No. Date Sampled				MW-301 11/8/2000	up.		MW-301 Dup. 6/20/2001	-	MW-302 2/6/1997		MW-302 2/28/2000	MW-302 11/8/2000	MW-302 6/21/2001			MW-302 3/11/2004	MW-302 6/11/2004		Tier II Residential Cleanup Goals - Groundwater	Fier II Non-Residential Cleanup Goals - Groundwater (1)	Detected compound exceeds the VRP Tier II Non-Residential Cleanup Goal	Contract of the Contract of the SPS William II Contract of Contract Contrac
Screen Interval		45-50	45-50	45-50	45-50	45-50	45-50		45-55		45-55	45-55	45-55	45-55	45-55	45-55	45-55	100	undwater	Groundwater (1)	Non-Residential Cl.	The state of the same of
Lab Sample No.	W7020074-17	253808		280708		1		324113	W7020074-18	253795	260593	280710	296403	324186	503002719	NS	503518110				canup Goal	
cis-1,3-Dichloro- propene	0.50	65.0	<5.0	65.0	<5.0	<5.0	<5.0	100			<5.0	<5.0	<5.0	65.0	< 5.0	SN	<5.0		NA	N. A.		
-oroldoi(L-E,1-ansri		<5.0	6.0	65.0	65.0	65.0	65.0	<1.0	65.0	0.65	6.0	65.0	65.0	65.0	<5.0	SN	< 5.0		NA	NA		
Ейруі Асеішіе				NA				NA	NA	NA NA	NA	NA	NA		NA	SN	NA		NA	NA		
auazuaqıAqr3	650	65.0	650	<5.0	5.0	5.0	65.0	<1.0	650	0.0	65.0	0.5	6.0	6.0	<5.0	SN	< 5.0		700	10,220		
Ethyl methacrylate			<10.	<10.					NA						<100	NS	< 100		NA	NA		
2-Hexanone								2				<50.			<10.	NS	<10.		NA	NA		
Hexachloro-butadiene	NA NA	<5.0 <10.	0		<5.0 <1			7				<5.0 <1			< 5.0 <1	SN	< 5.0 <	-	10	36.7		
lodomethane	AN											<10.			<10.	NS	10.	ŀ	NA	NA 10		
Sopropyl-benzene	AN											6.0 <5.0			< 5.0 < 5	NS	<5.0 <5	(I)	689	10,2000		
-Isopropyl-toluene							Ì	Ì							5.0	SN	< 5.0	r	NA	NA		
Methylene chloride	A	7			<10, <5				5.0 62			<10.		<10. <5		NS	< 5.0 <	H	6.30	38103		
Methyl-ethyl-ketone		0. <10						55				<50.			< 10.	NS	10.		917.72	5,110		
(MLBE) Methyl-tert-butyl ether	Ť											<10,				SN	<5.0		45	715		
4-Methyl-2-pentanone	(20											<50. ·				SN	< 10.		1,520	5,110		
onoladidqaN	NA NA											S.0 N	Y.		<10.	NS	<5.0 N	-	1,216	4,083		
Paraldehyde	A N	NA <5										NA AN			< 5.0 <	SN	NA AN		VA	NA		
n-Propyl-benzene												5.0			5.0 <	NS	< 5.0 <	000	100	1,020 [©]		
Styrene	<5.0 N.											<5.0			< 5.0 <	70	< 5.0 <	-	NA	NA		
-oroldsertet-achloro- ethane		<5.0 <5.0							П								< 5.0	-	0	110		
ethane ethane Tetrachloro-ethene							I									S	<5.0 <5.0	-	0	14.3		

Table 10a
Deep Monitoring Well Groundwater Analytical Results for VOCs (ug/L)
Former General Motors Corporation
Allison Gas Turbha Division, Plant 10
Indianapolis, Indiana
IDEM VRP #6991004
KERAMIDA Project No. 2829E

																The same of the same of				The second second							2	е	f	e	r	e	nc		e
Xylenes, (Total)	0.6>0	3<1.0	0 < 10.	0 < 10.	0 < 10.	0 < 10.	0.65.0	3 < 1.0	0 < 10.	< 10.	. 10.	- 10°	000	0 < 10	01 > 10	0 < 10.	0 < 10.	65.0	<1.0	-	-		< 10.	SD <50		<5.0	<1.0	<1.0	<1.0	10,000		204,400			
Vinyl chloride	150	6	86	84	40	40	73	56	25	130	4	5	36	23	23	22	24	<2.0 2.0	<1.0	8.7	9	20		1	9	<2.0	<1.0	<1.0	<1.0	2		10			
Vinyl acetate	<10.	0.50	< 10.	< 10.	< 10.	< 10.	<10.	<5.0	< 0,	< 10.	< 0.	V 0.	×10.	V 10	012	× 10.	× 10.	<10.	65.0	<10.	65.0	< 10.	× 10.	<10	65.0	<10.	0.0	0.0	0.0	NA		NA			
1,3,5-Trimethyl- bensene	1 -	0.15	< 5.0	< 5.0	< 5.0	< 5.0	65.0	0.1>	6.0	6.50	< 5.0	0.62	0.0	082	080	65.0	< 5.0	<5.0	<1.0	<5.0	0.1>	0.50	< 5.0	050	<1.0	<5.0	0,15	0.1>	0.10	13.7(2)		5,110(2)			
-lydiəmirT-4-L,1,			<50									0.00	T			T	T					Ť	Ť	050		<5.0	<1.0	<1.0	<1.0	13.70		5,110 [©]			
1,2,3-Trichloro- propane		6.0	<50				65.0					0.00			T	650		T		<5.0	<5.0	< 5.0	<5.0	250	<5.0	<5.0	<5.0	<5.0	<5.0	AN		N.A.			
-oronDoroldəirT ənsdəm		<1.0	< 5.0	< 5.0	< 5.0	<5.0	6.0	<1.0	6.0	65.0	< 5.0	000	0.0	<50 <50	080	650	< 5.0	65.0	<1.0	6.0	<1.0	< 5.0	< 5.0	65.0	<1.0	6.0	<1.0	<1.0	<1.0	1,380 ⁽²⁾		30,700 ⁽²⁾			
Trichlorocthene	65.0	<1.0	< 5.0	< 5.0	< 5.0	< 5.0	0.50	<1.0	6.0	<5.0	< 5.0	0.00	0.0	C 200	0 0 0 0	650	< 50	<5.0	<1.0	<5.0	<1.0	< 5.0	< 5.0	250	<1.0	<5.0	<1.0	<1.0	<1.0	15		260			
nsd19-oroldorr-ethan												O'C'	T		T			T		6.0	0.1>	< 5.0	<5.0	000	0.1>	6.0	0.1>	0.1>	0.1>	5		50.2			
nndro-oroldoraT-L,L,	6.0	Ť	T	T	T	< 5.0	T	Ì				T	0.0		T	T	T	T		6.0				200		6.0	<1.0		<1.0	200		861'6			
1,2,4-Trichloro- benzene	1 -	T	T	020	T	<5.0	Г	650	6.0	65.0	< 5.0	T	0.0	T	T	050	650	T	65.0	65.0	6.0	<5.0	< 5.0	000	65.0	6,0	65.0		6.0	70		1,022			
L,2,3-Trichloro- benxene	1	Ť	Ī	T		T	Т				< 5.0	T		T	000	T	050	Т					< 5.0	1			6.0	6.0	0.0	NA		NA			
Loluene	ľ	Ť	Ť			T	T	Ť	<5.0		1	T	T		T	T	T	T				< 5.0		050	T		<1.0	0.15	0.0	1,000		20,440			
Tetrahydro-furan			I										NA											NA				NA N	NA	NA		NA			
Lab Samole No.				100									\$1,5005	7								503002701		303493082				327654	327655				cump Goal	p-Goal	
Screen Interval	T	42.47	42.47	42.47	42.47	42-47	46-51	46-51	46-51	46-51	46-51	46-51	28-33	28-33	20.33	78.33	28.33	26.31	26-31	32.37	32-37	32-37	32-37	34.30	34.39	44-49	44-49	33-38	33-38	oundwater (1)		- Groundwater (1)	II Non-Residential C II Residential Cleans	If Residential Cleum	
Date Samoled	1/30/2002	7/18/2002	12/05/2003	3/11/2004	6/3/2004	6/3/2004	1/31/2002	7/18/2002	1/6/2004		3/11/2004	6/3/2004	1/31/2002	17/1/2002	12/04/2003	3711/2004	69,0004	1/31/2002	7/18/2002	1/30/2002	7/17/2002	12/04/2003	3/11/2004	121,2003	7/17/2002	1/30/2002	7/17/2002	9/4/2002	9/4/2002	Ter II Residential Cleanup Goals - Groundwater (1)		ier II Non-Residential Cleanup Goals - Groundwater (1)	seeds the VRP Ther	below the VRP Tier	octes.
Sample No.	MW-165D	MW-165D	WW.165D	WW.165D	WW-165D	MW-165D	MW-166D	MW-166D	MW-166D	W-166D Duplicate	MW-166D	MW-166D	MW-167D	MW-167D	ANN LETT INTO	MW.167D	WW.167D	WW.168D	WW-168D	MW-169D	MW-169D	MW-169D	MW-169D	MW-109D	WW-170D	MW-171D	MW-171D	MW-172D	MW-172D Dup.	ier II Residential C		er II Non-Residen	etected compound en	etected compound is	ce last page for footnotes

Table 10a
Deep Monitoring Well Groundwater Analytical Results for VOCs (ug/L)
Former General Motors Corporation
Allison Gas Turbhe Division, Plant 10
Indiamapolis, Indiana
IDEM VRP #6991004
KERAMIDA Project No. 2829E

able 10u - Deep Monitoring Well Groundw

Xylenes, (Total)	65.0	<5.0	<5.0	6.0	6.0	<5.0	<5.0	6.6	6.0	<5.0	<5.0	<5.0	<5.0	€5.0	<5.0	6.0	6.0	<1.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	10,000	204,400
Vinyl chloride	<10	<10	65.0	65.0	0.50	65.0	0.25	0.25	<2.0	0.25	0.25	<10	<10	6.0	0.50	0.7	0.2	<1.0	<10	<10	65.0	65.0	0.25	0.2	0.2	0.20	2	10
Vinyl acetate	200	420	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10,	<10.	<20	<20	<10.	<10.	<10.	<10.	65.0	<20	<20	<10.	<10.	<10.	<10.	<10.	<10.	NA	NA
1,3,5-Trimethyl- bensene	NA		0.5		6.0	650	6.6	65.0	6.0	6.0	6.0	NA		0.5>	<5.0	65.0	6.0	<1.0	NA	NA.	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	13.7	5,110
-lydəmirT-b,2,1 ənəxnəd	NA	NA	0.0	0.0	0.0	0.0	6.0	0.0	6.6	6.0	6.0	NA.	NA	6.0	6.0	6.0	6.0	<1.0	NA	NA	<5.0	6.0	6.0	6.0	6.0	6.0	13.70	5,110 ⁽²⁾
L.S.3-Trichloro- annegorq	NA	NA	65.0	0.0	6.0	65.0	6.0	65.0	65.0	6.0	6.0	NA	NA	6.0	6.0	6.60	6,0	65.0	NA	NA.	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA	NA
Trichlorofluoro- methane			65.0		× 0.5>	× 0.5>	× 0.5>	<5.0	× 0.6>	<5.0 ×		NA		<5.0 ×	<.0.5	> 0.5>	S.0 ×	<1.0	NA N	NA N	<5.0	5.0	< 0.0	< 0.5	S.0 ×	S.0 <	1,380	30,700(2)
Trichloroethene	6.0		6.0		6.0	6.0	6.0	6.0	6.0	65.0		0.0	0.50	0.0	6.0	0.0	6.0	<1.0	6.0	6.0	6.0	6.0	0.0	6.0	0.0	6.0	2	260
naths-oroldsirT-2,1,1	65.0	6.0	6.0	6.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<1.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	2	50.2
nedis-oroldsirT-I,I,I	6.0		6.0		6.0	650	5.0	6.0	6.0	6.0		6.0	6.0	6.0	6.0	6.0	6.0	0.1>	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	200	861'6
-ozofahrī-4-£,1 snasnac	1		6.0	6.0	6.0	6.0	6.0	€5.0	6.0	6.0		NA		<5.0	<5.0	6.0	6.0	<5.0	NA.	NA.	<5.0	6.0	650	<5.0	<5.0	<5.0	70	1,022
-oroldzirT-£,2,1 ansznad			6.0		65.0	6.0	6.0	6.0	65.0	6.6		NA		6.0	6.0	6.0	65.0	6.0	NA	NA.	· 0.6>	6.0	6.0	6.0	6.0	€.0	NA	NA
Loluene	650		S0 .		0.50	0.50	0.5	<5.0	650	050		650	650	<5.0	<5.0	<5.0	650	<1.0	<5.0	<5.0	650	<5.0	0.5	<5.0	<5.0	0.5	1,000	20,440
Letrahydro-furan	NA.				NA.	NA	NA.					NA		NA.	N.A.	NA.	NA	N.A.	NA.	NA	NA	NA	NA.	NA	NA	NA	NA	NA
Lab Sample No.	W5070229-02	т	253804		260576	260569	280703		296392			W5070191-04		253810	260580	280705	296400	324115	W5070191-05	W7020074-22	253797	260595	280706	280707	296406	324187		
Screen Interval	45.50	45.50	45.50	45.50	45.50	45.50	45.50	45.50	45.50	45.50	45-50	36-38	36-38	36-38	36-38	36-38	36-38	36-38	33-35	33-35	33-35	33-35	33-35	33-35	33-35	33-35	roundwater (1)	ier II Non-Residential Cleanup Goals - Groundwater (1)
Date Sampled	7/17/1995	275/1997	11/23/1999	11/23/1999	2/29/2000	2/29/2000	11/8/2000	6/20/2001	6/20/2001	7/19/2002	7/19/2002	7/14/1995	2/6/1997	11/23/1999	2/29/2000	11/8/2000	6/20/2001	7/18/2002	7/14/1995	2/6/1997	11/23/1999	2/28/2000	11/8/2000	11/8/2000	6/21/2001	7/22/2002	Ter II Residential Cleanup Goals - Groundwater (0)	ial Cleanup Goals
Sample No.	MW-200	MW-200	MW-200	MW-200 Dup	MW-200	MW-200 Dup.	MW-200	MW-200	MW-200 Dup.	MW-200	MW-200 Dup.	MW-201	MW-201	MW-201	MW-201	MW-201	MW-201	MW-201	MW-202	MW-202	MW-202	MW-202	MW-202	MW-202 Dup.	MW-202	MW-202	II Residential C	II Non-Resident

See last page for footnotes.

Table 10a

Deep Monitoring Well Groundwater Analytical Results for VOCs (ug/L.)
Forner General Motors Corporation
Allison Ges Turbine Division, Plant 10
Indianapolis, Indiana
IDEM VRP #6091004
KERAMIDA Project No. 2829E

Table 10a - Deep Monitoring Well Groun

Reference 36

Xylenes, (Total)	0.6>	65.0	0.50	0.50	0.65	0.50	0.50	<1.0	0.65	0.6	0.65	<5.0	<5.0	0.65	< 10.		< 10.	10.000	10,000	204,400	
Vinyl chloride	<10	65.0	65.0	0.25	0.2	0.0	0.0	0.15	OI>	0.0	65.0	0.0	0.0	3,	4	NS	< 2.0			10	
Vinyl acetate	<20	<10.	<10.	<10.	<10.	<10.	<10.	0.50	<20	<10.	<10.	<10.	<10,	<10.	< 10.	NS	<10.	NA		NA	
1,3,5-Trimethyl- benzene	NA	6.0	6.0	65.0	0.5	65.0	65.0	<1.0	NA	0.5>	0.5>	6.0	<5.0	0.5>	< 5.0	NS	< 5.0	13.70		5,110	
1,2,4-Trimethyl- benzene	NA	6.0	6.0	6.0	6.0	6.0	6.0	(20)	NA	6.0	6.0	6.0	6.0	6.0	<5.0	NS	<5.0	13.700	100	5,110(2)	
-o.roldoro- anaqorq	N.A.	6.0	6.0	0.5	9.0	650	650	0.5	NA	6.0	<5.0	<5.0	<5.0	0.5>	< 5.0	NS	< 5.0	NA	100	NA	
Trichlorofluoro- methane	NA	6.0	6.0	65.0	6.0	0.6	65.0	0.1>	NA	6.0	6.0	6.0	6.0	6.0	< 5.0	SN	< 5.0	1.380(2)	11000	30,70002)	
Trichloroethene	6.0	6.0	6.0	0.60	0.60	0.0	0.0	0.1>	0.50	6.0	6.0	6.0	€5.0	65.0	< 5.0	NS	< 5.0	5		260	
onsdie-oroldori-1,1,1	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	0.1>	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	< 5.0	NS	< 5.0	5		50.2	
J.JTrichloro-ethane	6.0	0.0	6.0	6.0	0.0	65.0	0.50	0.1>	0.60	0.50	65.0	6.0	6.0	6.0	< 5.0	SN	< 5.0	200	200	9,198	
-o.toldoro- bensene	NA	<5.0	<5.0	<5.0	<5.0	<5.0	650	900	NA	6.6	<5.0	<5.0	<5.0	<5.0	< 5.0	NS	< 5.0	20		1,022	
1,2,3-Trichloro- benzene	NA	6.0	6.0	65.0	6.0	6.0	6.0	6.0	NA	6.0	6.0	6.0	6.0	6.0	<5.0	SN	<5.0	NA		NA	
Toluene	<5.0	<5.0	<5.0	6.0	<5.0	650	<5.0	<1.0	6.0	<5.0	<5.0	<5.0	<5.0	<5.0	< 5.0	NS	< 5.0	1.000	0001	20,440	
Tetrahydro-furan	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NS	NA	NA.		NA	
Lab Sample No.	W7020074-17	253808	260578	280708	280709	296396	296397	324113	W7020074-18	253795	260593	280710	296403	324186	503002719	NS	503518110		Company of the last		Icanop Goal
Screen Interval	45-50	45-50	45-50	45-50	45-50	45-50	45-50	45-50	45-55	45-55	45-55	45-55	45-55	45-55	45-55	45-55	45-55	roundwater (3)		Non-Residential Cleanup Goais - Groundwater (1)	the VRP Tier II Non-Residential Cleanup Goal
Date Sampled	2/6/1997	11/23/1999	2/29/2000	11/8/2000	11/8/2000	6/20/2001	6/20/2001	7/18/2002	2/6/1997	11/23/1999	2/28/2000	11/8/2000	6/21/2001	7/22/2002	12/03/2003	3/11/2004	6/11/2004	II Residential Cleanun Goals - Groundwater (1)	omac dama	tial Cleanup Goals	ceeds the VRP Ther
Sample No.	MW-301	MW-301	MW-301	MW-301	fW-301 Dup.	MW-301	W-301 Dup.	MW-301	MW-302	MW-302	MW-302	MW-302	MW-302	MW-302	MW-302	MW-302	MW-302	I Residential C		II Non-Resident	cted compound ex-

Table 10a
Deep Monitoring Well Groundwater Analytical Results for VOCs (ug/L)
Former General Motors Corporation
Allison Gas Turbine Division, Plant 10
Indianapolis, Indiana
IDEM VRP #6991004
KERAMIDA Project No. 2829E

Pyrene	<0.20	<0.20	<0.45	<0.21	<0.20	<0.20	<0.20	7.27	7.27	0.67	6.31	2.7	<0.20	42.7	<0.20	2.7	2.7	<0.20	4.7	<0.20	THE PERSON NAMED IN	912	1000	3,066	
Phenanthrene	<1.00	<1.02	2.27	<1.03	<1.00	<1.02	<1.02	<6.4	<6.4	<1.00	<1.00	<6.4	<1.02	<6.4	10.1>	<6.4	<6.4	<1.00	4.9>	<1.02		230(3)		230(3)	
Naphthalene	<2.00	<2.04	<4.54	<2.06	<2.00	<2.04	<2.04	0.8>	<8.0	<2.00	<2.00	0.8>	<2.04	0.8>	<2.02	0.8>	0.8>	<2.00	0.8>	<2.04		1,216		4,088	
Indeno (1,2,3- cd) pyrene		<0.20	<0.40	<0.21	<0.20	<0.20	<0.20	0.34	0.21	0.25	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	S. C. Zoni	0.40		10	
Fluorene	<1.00	<1.02	<2.27	<1.03	<1.00	<1.02	<1.02	<2.1	<2.1	<1.00	<1.00	<2.1	<1.02	42.1	<1.01	2.1	<2.1	<1.00	<2.1	<1.02		1,216		4,088	
Fluoranthene		<0.20	<0.45	<0.21	1.63	<0.20	<0.20			0.87	6.5	<2.1		42.1		<2.1	<2.1	<0.20		<0.20	STATE OF	243.2		817.6	
Dibenzo (a,h) anthracene		<0.10	<0.23	<0.10	<0.10		<0.10	0.21	<0.20	0.39	<0.10	<0.20	<0.10	<0.20	<0.10	<0.20	<0.20	<0.10	<0.20	<0.10		0:30		10	
Chrysene					<0.20			0.57	0.37	0.41	0.21	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	THE STREET	0.20		391.8	
gnoranthene Benzo (k)	0	<0.20		<0.20	<0.20		<0.20	0.31	0.21	<0.20	<0.20	<0.20		<0.20	<0.20			<0.20	<0.20	<0.20		0.20		39.2	
Benzo (ghi) perylene		<0.20	<0.45	<0.21	<0.20	<0.20	<0.20	<0.76	<0.76	0.41	0.24	<0.76		<0.76	<0.20	<0.76	<0.76	<0.20	<0.76	<0.20		38.4 ⁽²⁾		613(2)	
Benzo (b)		<0.20	1.77	<0.20	<0.20	<0.20	<0.20	0.53	0.34	0.35	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20		0.20		10	
bluenc Benzo (a)	18	<0.20	<0.20	<0.20	<0.20		<0.20	0.34	0.21	0.35	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20		0.20		10	
Benzo (a) anthracene	10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.35	0.23	0.28	0.13	<0.20	<0.10	<0.20	<0.10	<0.20	<0.20	<0.10	<0.20	<0.10		0.10	7000	10	
Anthracene		<1.02	227	<1.03	<1.00	<1.02	<1.02	9.9>	9.9>	<1.00	<1.00	9'9>	<1.02			9.9>		<1.00	9.9>	<1.02		9,120		30,660	
уссивЪрџуλјси	<1.00	<1.02	4.27	<1.03	<1.00	<1.02	<1.02	<10	<10	<1.00	<1.00	<10	<1.02	01>	<1.01	01>	<10	<1.00	<10	<1.02		6.89(2)		2,040 ⁽²⁾	
Acenaphthene	<1.00	<1.02	12.27	<1.03	<1.00	<1.02	<1.02	×18	81>	<1.00	<1.00	81>	<1.02	<18 <18	10.1>	81>	81>	<1.00	81>	<1.02		1,824		6,132	
Cab Sample No.	324109	324107		324112				296391			325266				324187			324113		324186				ter (i)	Marie Chamman Cont
Screen Date Sampled Interval (feet) Lab Sample No	42-47	16-51	28-33	26-31	32-37	34-39	44-49	45-50	45-50	45-50	45-50	36-38	36-38	33-35	33-35	45-50	45-50	45-50	45-55	45-55		Groundwater (1)		oals - Groundwa	David Man David
Date Sampled	7/18/2002	7/18/2002	7/17/2002	7/18/2002	7/17/2002	7/17/2002	7/17/2002	6/20/2001	6/20/2001	8/8/2002	8/8/2002	6/20/2001	7/18/2002	6/21/2001	7/22/2002	6/20/2001	6/20/2001	7/18/2002	6/21/2001	7/22/2002		Cleanup Goals -		ential Cleanup G	O O No of the land
Sample No.	MW-165D	MW-166D	MW-167D	MW-168D	MW-169D	MW-170D	MW-171D	MW-200	MW-200 Dup.	MW-200	MW-200 Dup.	MW-201	MW-201	MW-202	MW-202	MW-301	MW-301 Dup.	MW-301	MW-302	MW-302		Tier II Residential Cleanup Goals - Groundwater	THE REAL PROPERTY.	Tier II Non-Residential Cleanup Goals - Groundwater (1)	Detected commercial accorde the VDD Tist II Non Daridonial Cleanin

Table 10b
Deep Monitoring Well Groundwater Analytical Results for PAHs (ug/L.)
Former General Motors Corporation
Allison Gas Turbine Division, Plant 10

Indianapolis, Indiana IDEM VRP #6991004 KERAMIDA Project No. 2829E

PAHs = Polynuclear Aromatic Hydrocarbons Samples analyzed using EPA SW-846 Method 8310

µg/L = micrograms per liter NA = Not Applicable

Table 10b - Deep Monitoring Well Groundwater - PAHs Page 1 of 1

¹⁰ Indiana Department of Environmental Management Voluntary
Remediation Program Resource Guide, Appendix F Trer II Cleanup
Goals-Human Health Evaluation by Office of Environmental

Response, July 1996.

⁽²⁾ Calculated using surrogate toxicity values and Tier II equations ⁽³⁾ The II Residential Cleanup Goal under Indiana Voluniary

Deep Monitoring Well Groundwater Analytical Results for Metals (ug/L) Allison Gas Turbine Division, Plant 10 Former General Motors Corporation KERAMIDA Project No. 2829E Indianapolis, Indiana IDEM VRP #6991004

MW-165D 1/30/2002 42-47 MW-165D 1/31/2002 42-47 MW-166D 1/31/2002 46-51 MW-166D 7/18/2002 46-51 MW-166D 1/31/2002 28-33 MW-167D 1/31/2002 28-33 MW-168D 1/31/2002 26-31 MW-168D 1/31/2002 26-31 MW-169D 1/30/2002 32-37 MW-169D 7/17/2002 32-37	312999 324109 313000 324107 313005 313004	Alsemic	Dowland	Codminum	Changanian	Lond	Monomer	Colonium	Cilvor
7/18/2002 1/31/2002 7/18/2002 1/31/2002 1/31/2002 1/31/2002 1/30/2002 1/30/2002		NA	NA	710	9 0		NA	NA	NA
1/31/2002 7/18/2002 1/31/2002 7/17/2002 1/31/2002 7/18/2002 1/30/2002		NA	NA	0.17	~10		NA	NA	AN
7/18/2002 1/31/2002 7/17/2002 1/31/2002 7/18/2002 1/30/2002	3/10/11	MA	MIA	0.00			7	MA	NTA
7/18/2002 1/31/2002 7/17/2002 1/31/2002 1/30/2002 1/30/2002		NA	NA	0.1>			NA	NA	NA
1/31/2002 7/17/2002 1/31/2002 7/18/2002 1/30/2002		NA	NA	<5.0	12		NA	NA	NA
7/17/2002 1/31/2002 7/18/2002 1/30/2002		NA	NA	<1.0	8.9		NA	NA	NA
1/31/2002 7/18/2002 1/30/2002 7/17/2002	П	NA	NA	<5.0	20		NA	NA	NA
7/18/2002 1/30/2002 7/17/2002	Ī	NA	NA	<1.0	8.9		NA	NA	NA
1/30/2002		NA	NA	<5.0	<10.	6.2	NA	NA	NA
7/17/2002		NA	NA	<1.0	0.25	1.8	NA	NA	NA
		NA	NA	<5.0	<10.	0.5>	NA	NA	NA
MW-170D 1/31/2002 34-39		NA	NA	<1.0	6.0	4	NA	NA	NA
MW-170D 7/17/2002 34-39	324024	NA	NA	<5.0	71		NA	NA	NA
MW-171D 1/30/2002 44-49	312998	NA	NA	<1.0	0.50	6.3	NA	NA	NA
MW-171D 7/17/2002 44-49		NA	NA	<5.0	<10.	0.5>	NA	NA	NA
Tier II Residential Cleanup Goals - Groundwater (1)	(1)	50	2,000	5.0	100	15(2)	2.0	50	152
Tier II Non-Residential Cleanup Goals - Groundwater (1)	ater (I)	50	7,154	51.1	511	15(2)	6.1	511	511
Detected compound exceeds the VRP Tier II Non-Residential Cleanu	lential Cleanup Goal								

Samples analyzed using EPA Method Series 6000/7000

NA = Not Applicable µg/L = micrograms per liter

Appendix F Tier II Cleanup Goals-Human Health Evaluation by Office of Environmental Response, July 1996. (1) Indiana Department of Environmental Management Voluntary Remediation Program Resource Guide,

(2) IDEM VRP Interoffice Memo dated on January 26, 1998.

Table 10c - Deep Monitoring Well Groundwater - Metals

Page 1 of 3

9	Deep Monitoring Well Groundwater Analytical Results for Metals (ug	Former General Motors Corporation	Allison Gas Turbine Division, Plant 10	Indianapolis, Indiana	IDEM VRP #6991004	KERAMIDA Project No. 2829E
---	--	-----------------------------------	--	-----------------------	-------------------	----------------------------

Sample No.	Date Sampled	Screen Interval	Lab Sample	Total	Total	Total	Total	Total	Total	Total	Total
MW-200	11/8/2000	45-50	280703	<5.0	37	37 <5.0	<10.	18	V	<5.0	<5.0
MW-200 Dup.	11/8/2000	45-50	280704	<5.0	42	65.0	<10.	23	<0.5	<5.0	<5.0
MW-200	6/20/2001	45-50	296391	NA	NA	<5.0		87		NA	NA
MW-200 Dup.	6/20/2001	45-50	296392	NA	NA	<5.0	<10.	855	NA	NA	NA
MW-200	7/19/2002	45-50	324160	NA	NA	<5.0	<10.	36.6	NA	NA	NA
MW-200 Dup.	7/19/2002	45-50	324161	NA	NA	<5.0	<10.	27.8	NA	NA	NA
MW-201	11/8/2000	36-38	280705	9	064	<5.0	<10.	II	<0.5	9	<5.0
MW-201	6/20/2001	36-38	296400	NA	NA	<5.0	<10.	<5.0	NA	NA	NA
MW-201	7/18/2002	36-38	324115	NA	NA	<5.0	<10.	<5.0	NA		NA
MW-202	11/8/2000	33-35	280706	6	190	<5.0	<10.	<5.0	<0.5		<5.0
MW-202 Dup.	11/8/2000	33-35	280707	10	190	<5.0	<10.	6.0	<0.5	<5.0	<5.0
MW-202	6/21/2001	33-35	296406	NA	NA	<5.0	<10.	<5.0	NA	NA	NA
MW-202	7/22/2002	33-35	324187	NA	NA	<5.0	<10.	<5.0	NA	NA	NA
r II Residential	Tier II Residential Cleanup Goals - Groundwater (1)	roundwater (1)		50	2,000	5.0	100	15(2)	2.0	50	152
sr II Non-Resider	Tier II Non-Residential Cleanup Goals - Groundwater (1)	s - Groundwater	0	50	7,154	51.1	511	15(2)	6.1	511	511
ected compound e	Detected compound exceeds the VRP Tier II Non-Residential Cleanup Goal	r II Non-Residential	Cleanup Goal								
ected compound e	xceeds the VRP Tie	Detected compound exceeds the VRP Tier II Residential Cleanup Goa	nup Goal								

Samples analyzed using EPA Method Series 6000/7000

μg/L = micrograms per liter

NA = Not Applicable

(1) Indiana Department of Environmental Management Voluntary Remediation Program Resource Guide,

Appendix F Tier II Cleanup Goals-Human Health Evaluation by Office of Environmental Response, July 1996

(2) IDEM VRP Interoffice Memo dated on January 26, 1998

Table 10c - Deep Monitoring Well Groundwater - Metals

Deep Monitoring Well Groundwater Analytical Results for Metals (ug/L) Allison Gas Turbine Division, Plant 10 Former General Motors Corporation KERAMIDA Project No. 2829E IDEM VRP #6991004 Indianapolis, Indiana

Sample No.	Date Sampled	Screen Interval	Lab Sample No.	Total	Total	Total	Total Chromium	Total	Total	Total	Total
MW-301	11/8/2000	45-50	280708	9	-		<10.		8 < 0.5	<5.0	<5.0
MW-301 Dup.	11/8/2000	45-50	280709	<5.0	300		<10.		<0.5		<5.0
MW-301	6/20/2001	45-50	296396	NA	NA	65.0	<10.	<5.0	NA		NA
MW-301 Dup.	6/20/2001	45-50	296397	NA	NA	<5.0	<10.	<5.0	NA		NA
MW-301	7/18/2002	45-50	324113	NA	NA	<5.0	<10.		NA		NA
MW-302	11/8/2000	45-55	280710	<5.0	200	65.0	<10.		<0.5		<5.0
MW-302 Dup	11/8/2000	45-55	280711	<5.0	200	<5.0	<10.)[<0.5		<5.0
MW-302	6/21/2001	45-55	296403	NA	NA	65.0	<10.	<5.0	NA		NA
MW-302	7/22/2002	45-55	324186	NA	NA	0.5>	<10.	8.7	8.2 NA	NA	NA
				The second second			A TOTAL MAN				
Tier II Residential Cleanup Goals - Groundwater (1)	Cleanup Goals - C	Groundwater (1)		50	2,000	5.0	100	15(2)	2.0	50	152
Tier II Non-Residen	ntial Cleanup Goz	Tier II Non-Residential Cleanup Goals - Groundwater (1)	(50	7,154	51.1	511	15(2)	6.1	511	511
Detected compound	exceeds the VRP Ti	Detected compound exceeds the VRP Tier II Non-Residential Cleanup Goal	Cleanup Goal								
Detected compound	exceeds the VRP Ti	Detected compound exceeds the VRP Tier II Residential Cleanup Goa	nup Goal								
のは これの の の の の の の の の の の の の の の の の の の	The state of the s	The same of the same of	THE REAL PROPERTY AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS								

Samples analyzed using EPA Method Series 6000/7000

NA = Not Applicable μg/L = micrograms per liter

Appendix F Tier II Cleanup Goals-Human Health Evaluation by Office of Environmental Response, July 1996. (1) Indiana Department of Environmental Management Voluntary Remediation Program Resource Guide,

(2) IDEM VRP Interoffice Memo dated on January 26, 1998.

Table 11a Surface Water Analytical Results for VOCs (ug/L) Former General Motors Corporation Allison Gas Turbine Division, Plant 10 Indianapolis, Indiana IDEM VRP #6991004 KERAMIDA Project No. 2829E

Sample No.	Date Sampled	Sample Depth (feet)	Lab Sample No.	Acetone	Acrolein	Acrylonitrile	Benzene	Bromobenzene	Bromochloromethane	Bromodichloromethane	Bromoform	Bromomethane	n-Butylbenzene	sec-Butylbenzene	tert-Butylbenzene	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chlorodibromomethane
ST-1	10/4/1996		W6100112-01			NA	<5.0	NA	NA	<5.0	<5.0	<10	NA			<5.0	<5.0		<5.0
ST-1	2/10/1997	NA	W7020149-02	<20	NA	NA	<5.0	NA	NA	<5.0	<5.0	<10	NA		NA	<5.0	<5.0		<5.0
ST-2	10/4/1996	NA	W6100112-02	<20		NA	<5.0	NA	NA	<5.0	<5.0	<10			NA	<5.0	<5.0		<5.0
ST-2	2/10/1997	NA	W7020149-03	<20	NA	NA	<5.0	NA	NA	<5.0	<5.0	<10	NA		NA	<5.0	<5.0		<5.0
ST-2 Dup.	2/10/1997	NA	W7020149-04	<20	NA	NA	<5.0	NA	NA	<5.0	<5.0	<10	NA		NA	<5.0	< 5.0		<5.0
ST-3	10/4/1996	NA	W6100112-03	<20	NA	NA	<5.0	NA	NA	<5.0	<5.0	<10			NA	<5.0	<5.0		<5.0
ST-3	2/10/1997	NA	W7020149-01	<20	NA	NA	<5.0	NA	NA	< 5.0	<5.0	<10	NA	NA	NA	<5.0	<5.0	<5.0	<5.0
STA-SW	3/2/2000	NA	260554	<50	<250	<250	<5.0	<5.0	< 5.0	<5.0	<5.0	<10.	<5.0	<5.0	<5.0	< 5.0	<5.0	<5.0	<5.0
STB-SW	3/2/2000	NA	260556	<50	<250	<250	< 5.0	< 5.0	< 5.0	<5.0	<5.0	<10.	<5.0	<5.0	<5.0	< 5.0	<5.0	< 5.0	<5.0
STC-SW	3/2/2000	NA	260558	<50	<250	<250	<5.0	<5.0	< 5.0	<5.0	<5.0	<10.	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
STD-SW	3/2/2000	NA	260560	<50	<250	<250	<5.0	<5.0	<5.0	<5.0	<5.0	<10.	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
STE-SW	3/2/2000	NA	260562	<50	<250	<250	<5.0	<5.0	<5.0	<5.0	<5.0	<10.	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
		TO THE STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET,		100000000000000000000000000000000000000														10	
Surface Water	Screening Lev	els		NA	21 ⁽¹⁾	2,600 ⁽¹⁾	46(2)	NA	NA	11,000(1)	N.A	NA	NA	NA	NA	NA	35,200 ⁽¹⁾	130 ⁽²⁾	11,000 ⁽¹⁾

VOCs = Volatile Organic Compounds

 μ g/L = micrograms per liter NA = Not Applicable

(I) NOAA SQRTs 1999.

⁽²⁾ U.S. EPA ECOTOX Thresholds 1996.

Page 2 of 5

Table 11a Surface Water Analytical Results for VOCs (ug/L) Former General Motors Corporation Allison Gas Turbine Division, Plant 10 Indianapolis, Indiana IDEM VRP #6991004 KERAMIDA Project No. 2829E

Samble No. Sambled Debth (teet) No. Chlord C	trai but 1,1-
	NA <5.0
	NA <5.0
	NA <5.0
ST-2 2/10/1997 NA W7020149-03 <5.0 <5.0 <10 NA NA <10 NA NA NA <10 NA <10 <10 NA	NA <5.0
ST-2 Dup. 2/10/1997 NA W70201-'9-04 <5.0 <5.0 <10 NA NA <10 NA NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 <10 NA <10 <10 NA <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	NA <5.0
ST-3 10/4/1996 NA W6100112-03 <5.0 <5.0 <10 NA NA <10 NA NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 NA <10 <10 NA <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	NA <5.0
ST-3 2/10/1997 NA W7020149-01 <5.0 <5.0 <10 NA NA <10 NA NA <10 NA NA <10 <10 NA	NA <5.0
STA-SW 3/2/2000 NA 260554 <10. <20 <10. <5.0 <5.0 <50. <50. <50. <50. <50. <5	<50 <5.0
STB-SW 3/2/2000 NA 260556 <10. <20 <10. <5.0 <5.0 <50. <50. <50. <50. <50. <5	<50 <5.0
STC-SW 3/2/2000 NA 260558 <10. <20 <10. <5.0 <5.0 <50. <50. <50. <10. <5.0 <5.0 <50 <50.	<50 <5.0
STD-SW 3/2/2000 NA 260560 <10. <20 <10. <5.0 <5.0 <50. <50. <50. <10. <5.0 <5.0 <50 <50.	<50 <5.0
STE-SW 3/2/2000 NA 260562 <10. <20 <10. <5.0 <5.0 <50. <50. <50. <50. <50. <5	<50 <5.0
	Although the second
Surface Water Screening Levels NA 28,900 ⁽¹⁾ NA NA NA NA NA NA NA NA 11,000 ⁽¹⁾ 763 ⁽¹⁾ NA 763 ⁽¹⁾ 11,000 ⁽¹⁾	NA 47 ⁽²⁾

VOCs = Volatile Organic Compounds

 μ g/L = micrograms per liter NA = Not Applicable

(1) NOAA SQRTs 1999.

⁽²⁾ U.S. EPA ECOTOX Thresholds 1996.

Table 11a Surface Water Analytical Results for VOCs (ug/L) Former General Motors Corporation Allison Gas Turbine Division, Plant 10 Indianapolis, Indiana IDEM VRP #6991004 KERAMIDA Project No. 2829E

Sample No.	Date Sampled	Sample Depth (feet)	Lab Sample No.	2,1	1,1-Dichloroethene	cis-1,2-Dichloroethenc	trans-1,2-Dichloroethene	1,2-Dichloropropane	1,3-Dichloropropane	2,2-Dichloropropane	1,1-Dichloropropene	cis-1,3-Dichloropropene	trans-1,3- Dichloropropene	Ethylbenzene	Ethyl methacrylate	2-Hexanone	Hexachlorobutadiene	Iodomethane
ST-1	10/4/1996		W6100112-01		<5.0				NA		NA	<5.0	<5.0	<5.0	NA	<20	NA	NA
ST-1	2/10/1997		W7020149-02		<5.0				NA		NA	<5.0	<5.0	< 5.0	NA	<20	NA	NA
ST-2	10/4/1996		W6100112-02		<5.0				NA		NA	<5.0	<5.0	<5.0	NA	<20	NA	NA
ST-2	2/10/1997	NA	W7020149-03	<5.0	<5.0	<5.0			NA		NA	<5.0	<5.0	<5.0	NA	<20	NA	NA
ST-2 Dup.	2/10/1997	NA	W7020149-04	<5.0	<5.0	<5.0	<5.0	<5.0	NA		NA	<5.0	<5.0	<5.0	NA	<20	NA	NA
ST-3	10/4/1996	NA	W6100112-03	<5.0	<5.0	14	<5.0		NA		NA	<5.0	<5.0	< 5.0	NA	<20	NA	NA
ST-3	2/10/1997	NA	W7020149-01	<5.0	<5.0	< 5.0	<5.0	< 5.0	NA	NA	NA	<5.0	<5.0	<5.0	NA	<20	NA	NA
STA-SW	3/2/2000	NA	260554	< 5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10.	<50.	<5.0	<10.
STB-SW	3/2/2000	NA	260556	< 5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10.	<50.	< 5.0	<10.
STC-SW	3/2/2000	NA	260558	< 5.0	<5.0	<5.0	<5.0	< 5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10.	<50.	<5.0	<10.
STD-SW	3/2/2000	NA	260560	<5.0	<5.0	< 5.0	<5.0	< 5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10.	<50.	<5.0	<10.
STE-SW	3/2/2000	NA	260562	< 5.0	<5.0	<5.0	<5.0	< 5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10.	<50.	<5.0	<10.
0.6. 37.	o : 1	.1.		L 20 000(I)	20,000(1)	11.600(1)	11,600(1)	l _{na}	l na	NA	244 ⁽¹⁾	244 ⁽¹⁾	NA	290(2)	NA	l na	l na	NA
	Screening Lev			20,000(1)	20,000	11,000	11,000	INA	I NA	INA	244	244	INA	290	INA	INA	INA	INA

VOCs = Volatile Organic Compounds

 μ g/L = micrograms per liter NA = Not Applicable

(I) NOAA SQRTs 1999.

⁽²⁾ U.S. EPA ECOTOX Thresholds 1996.

Page 2

Table 11a Surface Water Analytical Results for VOCs (ug/L) Former General Motors Corporation Allison Gas Turbine Division, Plant 10 Indianapolis, Indiana IDEM VRP #6991004 KERAMIDA Project No. 2829E

Sample No.	Date Sampled	Sample Depth (feet)	Lab Sample No.	Iso	p-Isopropyltoluene	Methylene chloride	Methyl-ethyl-ketone (MEK)	Methyl-tert-butyl ether (MTBE)	4-Methyl-2-pentanone (MIBK)	Naphthalene	n-Propylbenzene	Styrene	1,1,1,2- Tetrachloroethane	1,1,2,2. Tetrachloroethane	Tetrachloroethene	Toluene	1,2,3-Trichlorobenzene	1,2,4-Trichlorobenzene
ST-1	10/4/1996	NA	W6100112-01		NA	<5.0		NA	<20	NA	NA		NA		<5.0	<5.0		NA
ST-1	2/10/1997	NA	W7020149-02		NA	<5.0	<20	NA	<20	NA_	NA		NA		<5.0	<5.0		NA
ST-2	10/4/1996	NA	W6100112-02	NA	NA	< 5.0	<20	NA	<20	NA	NA		NA	<5.0	<5.0	<5.0		NA
ST-2	2/10/1997	NA	W7020149-03	NA	NA	<5.0	<20	NA	<20	NA	NA		NA		<5.0	<5.0		NA
ST-2 Dup.	2/10/1997	NA	W7020149-04	NA	NA	<5.0	<20	NA	<20	NA	NA	<5.0	NA	<5.0	<5.0	<5.0	NA	NA
ST-3	10/4/1996	NA	W6100112-03	NA	NA	<5.0	<20	NA	<20	NA	NA	<5.0	NA	<5.0	<5.0	<5.0	NA	NA
ST-3	2/10/1997	NA	W7020149-01	NA	NA	<5.0	<20	NA	<20	NA	NA	<5.0	NA	<5.0	<5.0	<5.0	NA	NA
STA-SW	3/2/2000	NA	260554	<5.0	<5.0	<10.	<50.	<10.	<50.	<5.0	<5.0	<5.0	< 5.0	<5.0	<5.0	<5.0	<5.0	<5.0
STB-SW	3/2/2000	NA	260556	< 5.0	<5.0	<10.	<50.	<10.	<50.	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
STC-SW	3/2/2000	NA	260558	<5.0	<5.0	<10.	<50.	<10.	<50.	<5.0	<5.0	<5.0	<5.0	< 5.0	<5.0	<5.0	<5.0	<5.0
STD-SW	3/2/2000	NA	260560	<5.0	<5.0	<10.	<50.	<10.	<50.	<5.0	<5.0	<5.0	<5.0	< 5.0	<5.0	<5.0	< 5.0	<5.0
STE-SW	3/2/2000	NA	260562	<5.0	<5.0	<10.	<50.	<10.	<50.	<5.0	<5.0	<5.0	<5.0	< 5.0	< 5.0	<5.0	<5.0	<5.0
on privatives where the	OCCUPATION OF THE		TOTAL TRACTOR TOTAL TO	STORY OF STATES AND STATES				Mag. 1			de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la							A Company
Surface Water	Screening Lev	els		NA	NA	11,000 ⁽¹⁾	NA	NA	NA	NA	NA	NA	NA	420 ⁽²⁾	120 ⁽²⁾	130(2)	NA	110(2)

VOCs = Volatile Organic Compounds

 $\mu g/L = micrograms per liter$ NA = Not Applicable

(I) NOAA SQRTs 1999.

⁽²⁾ U.S. EPA ECOTOX Thresholds 1996.

Page 2

Table 11a Surface Water Analytical Results for VOCs (ug/L) Former General Motors Corporation Allison Gas Turbine Division, Plant 10 Indianapolis, Indiana IDEM VRP #6991004 KERAMIDA Project No. 2829E

Sample No.	Date Sampled	Sample Depth (feet)	Lab Sample No.	1,1,1-Trichloroethane	1,1,2-Trichloroethane	Trichloroethene	Trichlorofluoromethane	1,2,3-Trichloropropane	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	Vinyl acetate	Vinyl chloride	Xylenes, (Total)
ST-1	10/4/1996	NA	W6100112-01		<5.0	<5.0		ŇΑ	NA	NA	<20	<10	<5.0
ST-1	2/10/1997	NA	W7020149-02		<5.0	<5.0		NΑ	NA	NA	<20	<10	<5.0
ST-2	10/4/1996	NA	W6100112-02	<5.0	<5.0	<5.0		NA	NA	NΑ	<20	<10	<5.0
ST-2	2/10/1997	NA	W7020149-03	<5.0	<5.0	<5.0		NA	NA	NA	<20	<10	<5.0
ST-2 Dup.	2/10/1997	NA	W7020149-04	<5.0	<5.0	<5.0	NA	NA	NA	NΑ	<20	<10	< 5.0
ST-3	10/4/1996	NA	W6100112-03	<5.0	<5.0	<5.0	NA	NA	NA	NA	<20	<10	<5.0
ST-3	2/10/1997	.NA	W7020149-01	<5.0	<5.0	<5.0	NA	NA	NA	NA	<20	<10	<5.0
STA-SW	3/2/2000	.NA	260554	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10.	<5.0	<5.0
STB-SW	3/2/2000	NA	260556	<5.0	<5.0	<5.0	<5.0	< 5.0	<5.0	<5.0	<10.	<5.0	<5.0
STC-SW	3/2/2000	NA	260558	<5.0	< 5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10.	<5.0	<5.0
STD-SW	3/2/2000	NA	260560	<5.0	< 5.0	<5.0	<5.0	< 5.0	<5.0	< 5.0	<10.	< 5.0	<5.0
STE-SW	3/2/2000	NA	260562	<5.0	< 5.0	<5.0	<5.0	< 5.0	<5.0	<5.0	<10.	<5.0	<5.0
				(2)						1		1	. (2)
	Screening Lev			62(2)	9,400 ⁽¹⁾	350 ⁽²⁾	11,000(1)	NA	NA	NA	NA	NA NA	1.8 ⁽²⁾

VOCs = Volatile Organic Compounds

μg/L = micrograms per liter NA = Not Applicable

(1) NOAA SQRTs 1999.

(2) U.S. EPA ECOTOX Thresholds 1996.

Refere

Table 11b
Sediment Analytical Results for VOCs (mg/kg)
Former General Motors Corporation
Allison Gas Turbine Division, Plant 10
Indianapolis, Indiana
IDEM VRP #6991004
KERAMIDA Project No. 2829E

Sample No.	Date Sampled	Lab Sample No.	Acetone	Acrolein	Acrylonitrile	Benzene	Bromobenzene	Bromochloromethane	Bromodichloromethane	Вготобогт	Bromomethane (Methyl Bromide)	n-Butylbenzene	sec-Butylbenzene	tert-Butylbenzene	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chlorodibromomethane	Chloroethane	Chloroform
STA-SED	3/2/2000	260563	<0.10	< 0.25	<0.25	< 0.005	<0.005	<0.005	< 0.005	< 0.005	<0.010	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005	< 0.010	< 0.020
STB-SED	3/2/2000	260564	< 0.10	<0.25	<0.25	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.010	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.005	< 0.005	< 0.010	< 0.020
STC-SED	3/2/2000	260565	< 0.10	<0.25	<0.25	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.010	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.010	< 0.020
STD-SED	3/2/2000	260566	< 0.10	< 0.25	< 0.25	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.010	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.010	< 0.020
STE-SED	3/2/2000	260567	< 0.10	< 0.25	< 0.25	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.010	<0.005	<0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005	< 0.010	< 0.020
Sediment Screenin	g Levels		NA	NA	NA	0.057(1)	NA	NA	NA	NA	NA	NA	NA	NA	0.134 (2)	NA	0.82(1)	NA	NA	NA

VOCs = Volatile Organic Compounds

Samples analyzed using EPA SW-846 Method 8260

mg/kg = milligrams per kilogram

⁽¹⁾ U.S. EPA ECOTOX Thresholds 1996.

⁽²⁾ U.S. EPA Region 5 RCRA EDQLs 1999.

Table 11b
Sediment Analytical Results for VOCs (mg/kg)
Former General Motors Corporation
Allison Gas Turbine Division, Plant 10
Indianapolis, Indiana
IDEM VRP #6991004
KERAMIDA Project No. 2829E

Sample No.	Date Sampled	Lab Sample No.	Chloromethane (Methyl Chloride)	2-Chlortoluene	4-Chlorotoluene	2-Chloroethyl vinyl ether	1,2-Dibromo-3- Chloropropane	1,2-Dibromoethane	Dibronomethane (Methylene Bromide)	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	Dichlorodifluoromethane	trans-1,4-Dichloro-2- butene	1,1-Dichloroethane	1,2-Dichloroethane	1,1-Dichloroethylene	cis-1,2-Dichlorocthylene	trans-1,2-Dichloroethene	1,2-Dichloropropanc
STA-SED	3/2/2000	260563	< 0.010	< 0.005	< 0.005	< 0.050	<0.010	< 0.005	< 0.010	< 0.005	< 0.005	< 0.005	< 0.010	< 0.050	<0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005
STB-SED	3/2/2000	260564	< 0.010	< 0.005	< 0.005	< 0.050	< 0.010	< 0.005	< 0.010	< 0.005	< 0.005	< 0.005	< 0.010	< 0.050	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005
STC-SED	3/2/2000	260565	< 0.010	< 0.005	< 0.005	< 0.050	< 0.010	< 0.005	< 0.010	< 0.005	< 0.005	< 0.005	< 0.010	< 0.050	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
STD-SED	3/2/2000	260566	< 0.010	< 0.005	< 0.005	< 0.050	< 0.010	< 0.005	< 0.010	< 0.005	< 0.005	< 0.005	< 0.010	< 0.050	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005
STE-SED	3/2/2000	260567	< 0.010	< 0.005	< 0.005	< 0.050	< 0.010	< 0.005	< 0.010	<0.005	<0.005	< 0.005	< 0.010	< 0.050	<0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005
Sediment Screenin	g Levels		NA	NA	NA	NA	NA	NA	NA	0.34(1)	1.7(1)	0.35(1)	NA	NA	NA	NA	NA	NA NA	NA	NA

VOCs = Volatile Organic Compounds

Samples analyzed using EPA SW-846 Method 8260

mg/kg = milligrams per kilogram

1) U.S. EPA ECOTOX Thresholds 1996.

²⁾ U.S. EPA Region 5 RCRA EDQLs 1999.

Table 11b
Sediment Analytical Results for VOCs (mg/kg)
Former General Motors Corporation
Allison Gas Turbine Division, Plant 10
Indianapolis, Indiana
IDEM VRP #6991004
KERAMIDA Project No. 2829E

Sample No.	Date Sampled	Lab Sample No.	1,3-Dichloropropane	2,2-Dichloropropane	1,1-Dichloropropane	cis-1,3-Dichloropropene	trans-1,3. Dichloropropene	Ethylbenzene	Ethyl methacrylate	2.Hexanone	Hexachlorobutadiene	Iodomethane	Isopropylbenzene	p-Isopropyltoluene	Methylene chloride	Methyl Ethyl Ketone	Methyl(tert) butyl ether (MTBE)	4-Methyl-2-pentanone (MIBK)	Naphthalene	n-Propylbenzene
STA-SED	3/2/2000	260563	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.010	< 0.050	< 0.005	< 0.010	< 0.005	< 0.005	< 0.025	< 0.050	< 0.010	< 0.050	< 0.005	< 0.005
STB-SED	3/2/2000	260564	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.010	< 0.050	< 0.005	< 0.010	< 0.005	< 0.005	< 0.025	< 0.050	< 0.010	< 0.050	<0.005	< 0.005
STC-SED	3/2/2000	260565	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.010	< 0.050	< 0.005	< 0.010	< 0.005	< 0.005	< 0.025	< 0.050	< 0.010	< 0.050	< 0.005	< 0.005
STD-SED	3/2/2000	260566	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.010	< 0.050	< 0.005	< 0.010	< 0.005	< 0.005	< 0.025	< 0.050	< 0.010	< 0.050	<0.005	< 0.005
STE-SED	3/2/2000	260567	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.010	< 0.050	< 0.005	< 0.010	< 0.005	< 0.005	< 0.025	< 0.050	< 0.010	< 0.050	< 0.005	< 0.005
					77															Marie State of the
Sediment Screenin	g Levels		NA	NA	NA	NA	NA	3.6(1)	NA	NA	NA	NA	NA	NA	1.26(2)	NA	NA	NA	0.48(1)	NA

VOCs = Volatile Organic Compounds

Samples analyzed using EPA SW-846 Method 8260

mg/kg = milligrams per kilogram

(1) U.S. EPA ECOTOX Thresholds 1996.

⁽²⁾ U.S. EPA Region 5 RCRA EDQLs 1999.

Page 4 of 4

Table 11b Sediment Analytical Results for VOCs (mg/kg) Former General Motors Corporation Allison Gas Turbine Division, Plant 10 Indianapolis, Indiana IDEM VRP #6991004 KERAMIDA Project No. 2829E

Sample No.	Date Sampled	Lab Sample No.	Styrene	1,1,1,2-Tetrachlorocthanc	1,1,2,2-Tetrachloroethane	Tetrachloroethylene	Toluene	1,2,3-Trichlorobenzene	1,2,4-Trichlorobenzene	1,1,1-Trichloroethane	1.1,2-Trichloroethane	Trichloroethylene	Trichlorofluoromethane	1,2,3-Trichloropropane	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	Vinyl acetate	Vinyl chloride	Xylenes, Total
STA-SED	3/2/2000	260563	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.010	<0.010	< 0.005
STB-SED	3/2/2000	260564	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.010	<0.010	<0.005
STC-SED	3/2/2000	260565	< 0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.010	<0.010	< 0.005
STD-SED	3/2/2000	260566	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.010	< 0.010	< 0.005
STE-SED	3/2/2000	260567	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.010	< 0.010	< 0.005
												Alexander (
Sediment Screenin	g Levels		NA	NA	0.94(1)	0.53(1)	$0.67^{(1)}$	NA	9.2(1)	0.17(1)	NA	1.6(1)	NA	NA	NA	NA	NA	NA	0.025(1)

VOCs = Volatile Organic Compounds

Samples analyzed using EPA SW-846 Method 8260

mg/kg = milligrams per kilogram

⁽I) U.S. EPA ECOTOX Thresholds 1996.

⁽²⁾ U.S. EPA Region 5 RCRA EDQLs 1999.

Table 12a - Excavation Confir

Reference	3	6
-----------	---	---

														-								
Samule No.	Date Sampled	Depth Sumpled (feet)	Lab Sample No.	Acetone	nieloroA	yczkjonitzje	эцэгцэд	зизгизер	Вготосілюготейлапе	Bromodichloromethane	штојошот8	Bromide)	n-Butylbenzene	sec-Rutylbenzene	tert-Butylbenzene	Carbon disulfide	Carbon tetrachloride	Съйогорендене	Chlorodibromomethane	Съботоейване	ттогогоги	Chloromethane (Methyl
Al Sidewall I Surface	5/1/2001		9	<0.100	<0.520			2			22	0	2	2	30			<0.0052	<0.0052	<0.010		
Al Sidewall 2 Surface	5/1/2001	1.5		<0.110	<0.570													<0.0057	<0.0057	<0.011	<0.023	<0.011
A1 Sidewall 3 Surface	5/1/2001	1.5	291851	<0.100	<0.520	<0.260	<0.0052	<0.0052	<0.0052 <0.	<0.0052 <0.	<0.0052 <0	<0.010	<0.0052 <0.0	<0.0052 <0.0	<0.0052	<0.100	<0.0052	<0.0052	<0.0052	<0.010	<0.021	<0.010
A1 Sidewall 4 Surface	5/1/2001	1.5	291853	<0.110	<0.530		<0.0053		<0.0053 <0.	0,0053 <0	<0.0053 <0	<0.011 <0.0	<0.095 <0.0	<0.095 <0.0	<0.095	> 0110 <	<0.0053	<0.0053	<0.0053	<0.011		<0.011
A1 Sidewall 5 Surface	5/4/2001	0-2	292259	<0.100	<0.250	<0.250	<0.0051	> 1500.0>	<0.0051 <0.	<0.0051 <0.	<0.0051 <0	<0.010 <0.0	<0.0051 <0.0	<0.0051 <0.0	<0.0051	<0.0051 <0	<0.0051	<0.0051	<0.0051	<0.010	<0.020	<0.010
A2 Sidewall 1 Surface	5/9/2001	0-2	292402	<0.12	9'0>	<0.3	> 900.0>	> 900'0>	<0.006	0> 900'0>	0> 900'0>	<0.012 <0.0	900.0>		<0.006	<0.12	<0.006	900'0>	>0.000	<0.012	<0.024	<0.012
A2 Sidewall 2 Surface	5/9/2001	0-2	292404	<0.11	<0.57	<0.28	<0.0057	<0.0057	<0.0057 <0.	0> 000057	<0.0057 <0	<0.011 <0.0	<0.0057 <0.0	<0.0057 <0.0	<0.0057	>0.11	<0.0057	<0.0057	<0.0057	<0.011	<0.023	<0.011
A2 Sidewall 3 Surface	5/9/2001	0-2	292406	40.11	<0.57	<0.29	<0.0057	> 7500.0>	<0.0057 <0.	<0.0057 <0	<0.0057 <0	<0.011 <0.0	<0.0057 <0.0	<0.0057 <0.0	<0.0057	0.11	<0.0057	<0.0057	<0.0057	<0.011	<0.023	<0.011
A2 Sidewall 4 Surface	5/9/2001	0-2	292411	<0.12	<0.58	<0.29	<0.0058	<0.0058	<0.0058 <0.	<0.0058 <0							<0.0058	<0.0058	<0.0058	<0.012		<0.012
A2 Sidewall 5 Surface	5/10/2001	0-2	292569	<0.120	<0.290	<0.290	<0.0059	> 650000>	<0.0059 <0.	0> 65000>	<0.0039 <0	<0.012 <0.0	<0.0059 <0.0	<0.0059 <0.0	<0.0059 <	> 6500.0>	<0.0059	<0.0059	<0.0059	<0.012		<0.012
A2 Sidewall 6 Surface	5/10/2001	0-2	292571	<0.110	<0.280	<0.280	<0.0057	<0.0057 <	<0.0057 <0.	<0.0057 <0	<0.0057 <0	<0.011 <0.0	<0.0057 <0.0	<0.0057 <0.0	<0.0057	<0.0057 <0	<0.0057	<0.0057	<0.0057	<0.011		<0.011
A2 Sidewall 7 Surface	5/10/2001	0-2	292573	<0.110	<0.280	<0.280	<0.0056	<0.0056	<0.0056 <0.	O.0056 <0	<0.0056 <0	<0.011 <0.0				> 9500:0>	<0.0056	<0.0056	<0.0056	<0.011		<0.011
A3 Sidewall 1 Surface	4/10/2001	0-2	290206	<0.109	<0.272	<0.272	<0.0054	Ė	<0.0054 <0.	<0.0054 <0	<0.0054 <0	<0.011 <0.0	<0.0054 <0.0	<0.0054 <0.0	<0.0054	<0.0054	<0.0054	<0.0054	<0.0054	<0.011		<0.011
A3 Sidewall 2 Surface	4/10/2001	0-2	290208	801.0>	<0.269	<0.269	<0.0054	<0.0054			<0.0054 <0	<0.011 <0.0		Ì			<0.0054	<0.0054	<0.0054	<0.011		<0.011
A3 Sidewall 3 Surface	4/10/2001	0-2	290211	<0.110	<0.274	<0.274	<0.0055	<0.00055	<0.0055 <0.	<0.00055 <0	<0.0055 <0	<0.011 <0.0		<0.0055 <0.0		<0.0055 <0	<0.0055	<0.0055	<0.0055	<0.011		<0.011
A3 Sidewall 4 Surface	4/23/2001	0-2	291216	<0.107	<0.268	<0.268	<0.0054		<0.0054 <0.	<0.0054 <0	<0.0054 <0	<0.011 <0.0		Ì		<0.0054 <<	<0.0054	<0.0054	<0.0054	<0.011		<0.011
A3 Sidewall 6 Surface	4/25/2001	1	291422	<0.111	<0.556	<0.278	<0.0056	<0.00056	<0.0056 <0.	<0.0056 <0	<0.0056 <0	<0.011 <0.0	<0.0056 <0.0	<0.0056 <0.0	<0.0056	<0.111 <<	<0.0056	<0.0056	<0.0056	<0.011		<0.011
A3 Sidewall 7 Surface	4/25/2001	1	291424	<0.110	<0.551	<0.275	<0.0055	<0.00055	<0.0055 <0.	<0.0055 <0	<0.0055 <0	Ť					<0.0055	<0.0055	<0.0055	<0.011	<0.022	<0.011
A3 Sidewall 8 Surface	5/4/2001	0-2	292257	<0.100	<0.250	<0.250	<0.0051	<0.00051	<0.0051 <0.	<0.0051 <0	<0.0051 <0		<0.0051 <0.0	<0.0051 <0.0		<0.0051	<0.0051	<0.0051	<0.0051	<0.010		<0.010
A3 Sidewall 9 Surface	5/4/2001	0-2	292263	<0.370	016:0>						100			Ì			<0.018	<0.018	<0.018	<0.036		<0.036
A3 Sidewall 10 Surface	5/4/2001	0-5	292265	<0.110	<0.280	<0.280	<0.0056	> 950000>	<0.0056 <0	<0.0056 <0	<0.0056 <0	<0.011 <0.0				<0.0056 <	9500.05	<0.0056	<0.0056	<0.011	<0.022	<0.011
A4 Sidewall 1 Surface	5/4/2001	0-2	292247	<0.110	<0.270	<0.270	<0.0054	<0.00054	<0.0054 <0	<0.0054 <0	<0.0054 <0	<0.011 <0.0	<0.0054 <0.0	<0.0054 <0.0		<0.0054 <	<0.0054	<0.0054	<0.0054	<0.011	<0.022	<0.011
A4 Sidewall 2 Surface	5/4/2001	0-2	292252	<0.110	<0.270	<0.270	<0.0054	<0.0054	<0.0054 <0	<0.0054 <0	<0.00054 <0	<0.011 <0.0			<0.0054		<0.0054	<0.0054	<0.0054	<0.011		<0.011
A5 Sidewall Surface	5/4/2001	0-2	292240	<0.110	<0.280	<0.280	<0.0056	<0.00056	<0.0056 <0	<0.0056 <0	<0.0056 <0	<0.011 <0.0	<0.0056 <0.0	<0.0056 <0.0		<0.0056 <	<0.0056	<0.0056	<0.0056	<0.011	<0.022	<0.011
A5 Sidewall 2 Surface	5/4/2001	0-2	292243	<0.110	<0.280	<0.280	<0.0057	<0.00057	<0.0057 <0	<0.0057 <0	<0.0057 <0	<0.011 <0.0	<0.0057 <0.0	<0.0057 <0.0		<0.0057	<0.0057	<0.0057	<0.0057	<0.011		<0.011
A5 Sidewall 3 Surface	5/4/2001	0-2	292245	<0.110	<0.260	<0.260	<0.0053	<0.00053	<0.0053 <0	<0.0053 <0	<0.0053 <0	<0.011 <0.0	<0.0053 <0.0	<0.0053 <0.0	<0.0053	<0.0053 <	<0.0053	<0.0053	<0.0053	<0.011	<0.021	<0.011
THE RESERVE THE PERSON NAMED IN							No. of the last						ŀ	1								
ier II Residential Cleanup Goals Surface Soil'	als Surface Soil		-	1,000	NA	NA	22.07	NA	NA	10.3	NA	NA 1	1,000-1	1,000	1,000,1	1,000	NA	1,000	NA	NA	104.92	NA
ver II Non-Residential Cleanup Goals Surface Soil	o Goals Surface S.	control	1	1,000	NA	NA	16,63	VA	NA	10101	NA	NA 1	1,000'1	1,000	1,000	1,000	NA	1,000	NA	1,000	5.28	A'N
		Control of Section 1																				

Table 12a
Infirmation Surface Sol Analytical Results for VOC3 (mg/kg)
Former General Motors Corporation
Allison Gas Turbine Division, Plant 10
Indiampolis, Indiam proposis, Indiam IDEM WRP #6991004
KERAMIDA Project No. 2829E

Table 12a - Excavation Confirmation Surface Soil - VOCs Page 2 of 8

Reference 36

1.0.10	<0.0>	<0.0>	<0.0>	<0.0>	<0.0	<0.0	<0.0	<0.0	<0.0	<0.0×	<0.0>	<0.0	<0.0>	<0.0					
Chloroform	<0.022	<0.023	<0.023	<0.021	<0.023	<0.022	<0.022	<0.021	<0.021	<0.022	<0.024	<0.024	<0.022	<0.022		104.92	5.28		
Chloroethane	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.012	<0.012	<0.011	<0.011		NA	1,000		
Chlorodibromomethane	<0.0054	<0.0057	<0.0057	<0.0054	<0.0057	<0.0056	<0.0056	<0.0053	<0.0053	<0.0054		<0.006	<0.0055	<0.0054		NA	NA		
Chlorobenzene	<0.0054	<0.0057	<0.0057	<0.0054	<0.0057	9500'0>	<0.0056	<0.0053	<0,0053	<0.0054	<0.0059	900'0>	<0.0055	<0.0054		1,000(2)	1,000 ⁽²⁾		
Carbon tetrachloride	<0.0054	<0.0057	<0.0057	<0.0054	<0.0057	<0.0056	<0.0056	<0.0053	<0.0053	<0.0054	<0.0059	<0.006	<0.0055	<0.0054		NA	NA		
Carbon disulfide	<0.109	<0.0057		<0.107		<0.110		<0.110			<0.0059	<0.006		<0.110		1,000	1,000		
eu-Eutylbenzene		<0.0057			<0.0057	<0.0056		<0.0053	<0.0053		<0.0059	<0.006	<0.0055	<0.0054		1,000	1,000-21		
sec-Rutylbenzene		<0.0057		<0.0054						<0.0054	<0.0059	>0.006	<0.0055	<0.0054	The same of	1,000(2)	1,000(2)		
u-Butylbenzene	-		П	<0.0054	<0.0057	9500'0>		<0.0053	82	<0.0054	<0.0059	900'0>	<0.0055	<0.0054	The state of the s	1,000,13	1,000		
Bromomethane (Methyl Bromide)	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.012	<0.012	<0.011	<0.011		NA	NA		
Вготобогт	<0.0054	<0.0057	<0.0057	<0.0054	<0.0057			<0.0053	<0.0053	<0.0054	<0.0059	>0.006	<0.0055	<0.0054	The sales of	NA	NA		
Bromodichloromethane	<0.0054	<0.0057	<0.0057	<0.0054	<0.0057	<0.0056	<0.0056	<0.0053	<0.0053	<0.0054	<0.0059	900.0>	<0.0055	<0.0054		10,3(2)	10100		
Вготосійоготейвате	<0.0054	<0.0057	<0.0057	<0.0054	<0.0057	<0.0056	<0.0056	<0,0053	<0.0053	<0.0054	€500.0>	>00.006	<0.0055	<0.0054		NA	NA		
Bromobensene	<0.0054	<0.0057	<0.0057	<0.0054	<0.0057	<0.0056	<0.0056	<0.0053	<0.0053	<0.0054	<0.0059	>00.006	<0.0055	<0.0054		NA.	NA		
Benzene	<0.0054	<0.0057	<0.0057	<0.0054	<0.0057	<0.0056	<0.0056	<0.0053	<0.0053	<0.0054	<0.0059	>00.006	<0.0055	<0.0054		22.07	16.63		
Acrylonitrile	<0.272	<0.280	<0.280	<0.268	<0.280	<0.280	<0.280	<0.270	<0.270	<0.270	<0.295	<0.300	<0.270	<0.270		NA	NA		
Acrolein	<0.545	<0.280	<0.570	<0.536	<0.280	<0.560	<0.560	<0.530	<0.530	<0.540	<0.296	<0.300	<0.550	<0.540		NA	NA		
Acetone	<0.109	<0.110	<0.110	<0.107	<0.110	<0.110	<0.110	<0.110	<0.110	<0.110	<0.118	<0.12	<0.110	<0.110		1,000	1,000		
Lab Sample No.	291426	293507	291856	291432	293503	291857	291861	291858	291859	291863	290214	290217	291864	291865				In Goal	
Depth Sampled (feet)	-	0-2	1.5	1	1	1.5	0-5	1.5	1.5	1.5	0-5	0-2	1.5	1.5			oila	dential Cleam	
Date Sampled	4/25/2001	5/22/2001	5/1/2001	4/25/2001	5/22/2001	5/1/2001	5/1/2001	5/1/2001	5/1/2001	5/1/2001	4/10/2001	4/10/2001	5/1/2001	5/1/2001		als Surface Soil ⁽¹⁾	p Goals Surface S	ceeds the VRP Tier II Non-Residen	
Sample No.	Sidewall I Surface	Sidewall In Surface	5 Sidewall 2 Surface	Sidewall 3 Surface	Sidewall 3a Surface	V7 Floor 1 Surface	Floor 1 Surface Dup.	Sidewall I Surface	Sidewall 2 Surface	7 Sidewall 3 Surface	Sidewall I Surface	Sidewall 2 Surface	Sidewall 3 Surface	Sidewall 4 Surface		Residential Cleanup Goals Surface Soil ⁽¹⁾	Non-Residential Cleanup Goals Surface Soil	t compound exceeds the VRP Tree II Non-Residential Chemin Goal	

Table 12a
renation Surface Soil Analytical Results for VOCs (mg/kg)
Former General Motors Corporation
Alison Gas Turbine Division, Flant 10
Indiamapolis, Indiama
IDEM VRP #6991004

KERAMIDA Project No. 2829E

Reference 36 Page 216

Lab Sample	Pi Chlortoluene	snauforotold?)-	-Chloroethyl vinyl ether	2-Dibromo-3-Chloropropane	ənadiəomordid-£,	Obromomethane (Methylene Fromide)	anasmadoriolidald-2,	enexnedovoldelG-E-	anaxiaaoooniniote,	onslud-2-oroldold-4,f-sngr	austhaorothaid-1,	annthaorothane	-i-Dichloroethylene	susdisorochene	ensel,2-Dichloroethene	-2-Dichloropropane	-5-Dichloropropane	annqorqoroldoid-£,
291846	000	<0.00052		<0.100	-		0052 <0.005	<0.00	<0.0>	<0.100	<0.0052	<0.0052	<0.0052	<0.0052	<0.0052	<0.0052		<0.0052
291849	Г	<0.0057	Т		T	T				9	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057		<0.0057
29185		<0.0052	QN		~						<0.0052	<0.0052	<0.0052	<0.0052	<0.0052	<0.0052	<0.0052 <	<0.0052
291853	-	<0.095	Г								<0.0053	<0.0053	<0.0053	0,035	<0.0053	<0.0053	<0.0053	<0.0053
292259	T	<0.0051	Т	0	<0.0051 <0	<0.010 <0.0051	1500.051	1051 <0.0051	010'0>	<0.051	<0.0051	<0.0051	<0.0051	<0.0051	<0.0051	<0.0051		<0.0051
292402	2 <0.006	900'0>	ND	<0.120 <	<0.006	<0.012 <0.006	900'0> 900'0	900:0> 90	90'0>	ND	<0.006	<0.006	900.0>	<0.006	<0.006	>0.006	> 900.00>	<0.006
292404	<0.0057	<0.0057	QN	A0.11	<0.0057 <0	<0.011 <0.0057	7500.057	7500.057	7 <0.057	ON	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057
292406		<0.0057					<0.0057 <0.0057	750.0057	7 <0.057	QN	<0.0057	<0.0057	<0.0057	0.015	<0.0057	<0.0057	<0.0057	<0.0057
292411	1 <0.0058	<0.0058	Г	<0.12	<0.0058 <0	<0.012 <0.0	<0.0058 <0.0058	058 <0.0058	8 <0.058		<0.0058	<0.0058	<0.0058	0.0069	<0.0058	<0.0058	< 0.0058	<0.0058
292569	60000> 69	<0.0059	650.0>	<0.012	<0.0059 <0	<0.012 <0.0	<0.0059 <0.0059	059 <0.0059	0.012	<0.059	<0.0059	<0.0059	<0.00059	0,614	<0.0059	<0.0059	> 6500.0>	<0.0059
29257	11 <0.0057	<0.0057	<0.057	< 0.011	<0.0057 <0	<0.011 <0.0	<0.0057 <0.005	7500.057	110,0>	<0.057	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057	< 0.0057	<0.0057
292573	3 <0.0056	<0.0056	<0.056	> 110.0>	<0.0056 <0	<0.011 <0.0	<0.0056 <0.0056		5 <0.011	<0.056	<0.0056		<0.0056	-0.0056	<0.0056	<0.0056		<0.0056
290206	6 <0.0054	<0.0054	<0.054	< 0.011	<0.0054 <0	<0.011 <0.0	<0.0054 <0.0054	054 <0.0054	110.0> 4	<0.054	<0.0054	<0.0054	<0.0054	<0.0054	<0.0054	<0.0054	<0.0054	<0.0054
290208	8 <0.0054	<0.0054	<0.054	> 110.0>	<0.0054 <0	<0.011 <0.0	<0.0054 <0.0054	054 <0.0054	110,0>	<0.054	<0.0054	<0.0054	<0.0054	<0.0054	<0,0054	<0.0054	İ	<0.0054
290211	1 <0.0055	<0.0055	<0.055	< 0.011	<0.0055 <0	<0.011 <0.0	<0.0055 <0.005		5 <0.011	<0.055	<0.0055	Ĭ	<0.0055	<0.0055	<0.0055	<0.0055		<0.0055
291216	6 <0.0054	<0.0054		< 0.011						<0.0>	<0.0054		<0.0054	<0.0054	<0.0054	<0.0054		<0.0054
291422	2 <0.0056	<0.0056	ND	<0.011	<0.0056 <0	<0.011 <0.0					<0.0056		<0.0056	<0.0056	<0.0056	<0.0056		<0.0056
291424	<0.0055	<0.0055		<0.011	<0.0055 <0	<0.011 <0.0	<0.0055 <0.0055	055 <0.0055	5 <0.055	ON	<0.0055	<0.0055	<0.0055	<0.0055	<0.0055	<0.0055		<0.0055
0-2 292257	57 <0.0051	<0.0051	<0.051	<0.010	<0.0051 <0	<0.010 <0.0051		1500.051	010.0>	<0.051	<0.0051	<0.0051	<0.0051	0.0058	<0.0051	<0.0051	<0.0051	<0.0051
0-2 292263	53 <0.018	<0.018	<0.180	> 0.036	0> 810.0>	<0.036 <0.018	318 <0.018	810.0> 810	<0.036	<0.180	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	U	<0.018
	55 <0.0056	<0.0056	<0.056	< 0.011	<0.0056 <0	<0.011 <0.0	<0.0056 <0.0056		5 <0.011	<0.055	<0.0056	<0.0056	<0.0056	<0.0056	<0.0056	<0.0056	<0.0056	<0.0056
0-2 29224	7 <0.0054	<0.0054	<0.054	< 0.011	<0.0054 <0	<0.011 <0.0	<0.0054 <0.0054	054 <0.0054	110.0> 4	<0.054	<0.0054	<0.0054	<0.0054	<0.0054	<0.0054	<0.0054		<0.0054
292252		<0.0054	<0.054	<0.011			<0.0054 <0.0054		110.0> 4	<0.054	<0.0054	+C0.0054	<0.0054	<0.0054	<0.0054	<0.0054	<0.0054	<0.0054
292240	0.0056	<0.0056	<0.056	< 0.011	<0.0056 <0	<0.011 <0.0	<0.0056 <0.0056	056 <0.0056	1100> 9	<0.056	<0.0056	<0.0056	<0.0056	> 0,065	190003	<0.0056	<0.0056	<0.0056
0-2 292243	13 <0.0057	<0.0057	<0.057	<0.011	<0.0057 <0	<0.011 <0.0	<0.0057 <0.005	750.057 <0.0057	1100> 2	<0.057	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057
292245	<0.0053	<0.0053	<0.053	<0.011	<0.0053 <0	<0.011 <0.0	<0.0053 <0.0053	053 <0.0053	3 <0.011	<0.053	<0.0053	<0.0053	<0.0053	<0.0053	<0.0053	<0.0053	<0.0053	<0.0053
	Section of the second	THE STATE OF THE PARTY OF THE P																
	NA	NA	NA	NA	NA	NA 10	10,000	NA 26.	26.67 NA	NA NA	1,000	7.03	1.07	1,000	1,000(2)	NA	NA	ZA.
	VAN.	NA	NA.	NA.	NA	NA I	000001	NA 7.416.67	AN 599	NA	073.47	7 537	0.15	1.000	1.000 ⁽²⁾	NA	NA	Y.
	000	000	No.	100	180		-	-	-	-		+	201.00	1 thomas	40000			

Reference 36 Table 12a - Excavation Confirmation Surface Soil - NOCA Page 4 of 8 Page 4 of 8 Page 4 of 8 Page 4 of 8 Page 4 of 8 Page 12a - Excavation Confirmation Surface Soil - NOCA Page 217

	2,2-Dichloropane	<0.0054	<0.0057	<0.0057	<0.0054	<0.0057	<0.0056	<0.0056	<0.0053	<0.0053	<0.0054	<0.0059	<0.006	<0.0055	<0.0054		e Z	NA.			
	ənaqorqoroldəi(I-£,1	<0.0054	<0.0057	<0.0057	<0.0054	<0.0057	<0.0056	<0.0056	<0.0053	<0.0053	<0.0054	<0.0059	<0.006	<0.0055	<0.0054		V.	NA			
	1,2-Dichloropropane	<0.0054	<0.0057	<0.0057	<0.0054	<0.0057	<0.0056	<0.0055	<0.0053	<0.0053	<0.0054	<0.0059	900'0>	<0.0055	<0,0054		NA	NA			
	ənədəəoroldəid-2,1-znrrt			<0.0057	8			<0.0056			<0.0054		<0.006	<0.0055	<0.0054		1,000	1,000 ⁽²⁾			
		4		<0.0057			34	<0.0056			<0.0054	0,045			<0.0054		1,000	1,000			
O CONTRACT	analydiaerothidili.f.,f		<0.0057	<0.0057	<0.0054	<0.0057		<0.0056	<0.0053		<0.0054	6500.00	900.0>	<0.0055	<0.0054		1.07	0.15			
	onenhorochaid-£,1	A	<0.0057	<0.0057		<0.0057		<0.0056	<0.0053		<0.0054				<0.0054	1	7.03	5.27			
	1,1-Dichloroethane		<0.0057	<0.0057		<0.0057		<0.0056	<0.0053		<0.0054	<0.0059 <			<0.0054		1,000	973.47			
	onstud-2-oroldoid-4-l-enura		<0.057	<0.110	ND	<0.057		<0.110		<0.110		<0.059	<0.060	<0.110	<0.110		NA	NA			
	Dichlorodifluoromethane	<0.054	<0.011	<0.057	<0.054	<0.011	<0.056	<0.056	<0.053	<0.053	<0.054	<0.012	<0.012	<0.055	<0.054		NA	NA			
	1,4-Dichlorobenzene	<0.0054	<0.0057	<0.0057	<0.0054	<0.0057	<0.0056	<0.0056	<0.0053	<0.0053	<0.0054	<0.0059	<0.006	<0.0055	<0.0054		26.67	2,416.67			
	1,3-Dichlorobenzene	<0.0054	<0.0057	<0.0057		<0.0057		<0.0056	<0.0053	<0.0053		_	<0.006	<0.0055	<0.0054		NA	NA			
	susxnsderoldsl(l-2,1	-		<0.0057				<0.0056	<0.0053	<0.0053		6500.0>		<0.0055	<0.0054		10,000	10,000			
The state of the s	Dibromomethane (Methylene Bromide)		<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.012	<0.012	<0.011	<0.011		NA	NA			
	annisomordid-2,1	<0.0054	<0.0057	<0.0057	<0.0054	<0.0057		<0.00056	<0.0053	<0.0053	<0.0054	<0.0059	>00.00	<0.0055	<0.0054		NA.	AN			
	-S.Dibromo-3-Chloropropane	<0.011	<0.011	<0.110	<0.011	<0.011	<0.110	<0.110	<0.110	<0.110	<0.110	<0.012	<0.012	<0.110	<0,110		NA	NA			
	5-Chloroethyl vinyl ether	ND	<0.057	ND	ND	<0.057	QN	ND	QN	QN	QN	<0.059	090'0>	ND	ND		NA	NA			
	t-Chlorotoluene	<0.0054	<0.0057	<0.0057	<0.0054		<0.0056	<0.0056	<0.0053	<0.0053	<0.0054	_		<0.0055	<0.0054		NA	NA			
	Seconioriolida-5	<0.0054	<0.0057	<0.0057	<0.0054	<0.0057	<0.0056	<0.0056	<0.0053	<0.0053	<0.0054	<0.0059	900'0>	<0.0055	<0.0054		NA	NA			
	Lab Sample No.	291426	293507	291856	291432	293503	291857	291861	291858	291859	291863	290214	290217	291864	291865		10000		p Coal	la	lea
	Depth Sampled (feet)	1	0-2	1.5	1	_	1.5	0-2	1.5	1.5	1.5	0-2	0-2	1.5	1.5			Oil	dential Cleam	al Cleanup Go	int Cleaning G
	Date Samuled	4/25/2001	5/22/2001	5/1/2001	4/25/2001	5/22/2001	5/1/2001	5/1/2001	5/1/2001	5/1/2001	5/1/2001	4/10/2001	4/10/2001	5/1/2001	5/1/2001		Is Surface Soil ⁽¹⁾	Goals Surface S	eds the VRP Ther II Non-Residential Cleanup Goal	(P Ther II Resident)	RP The II Resident
	Sample No.	A6 Sidewall Sorface	A6 Sidewall In Surface	A6 Sidewall 2 Surface	A6 Sidewall 3 Surface	A6 Sidewall 3a Surface	A7 Floor 1 Surface	A7 Floor 1 Surface Dun.	A7 Sidewall Surface	A7 Sidewall 2 Surface	A7 Sidewall 3 Surface	A8 Sidewall Surface	A8 Sidewall 2 Surface	A8 Sidewall 3 Surface	A8 Sidewall 4 Surface		r II Residential Cleanup Goals Surface Soll	r II Non-Residential Cleanup Goals Surface Soil	ected compound exceeds the VB	ected compound exceeds the VRP Tier II Residential	ected compound is below the V.

Table 12a - Excar

Reference 36

Methyl(tert) butyl ether (MTBK) 4-Methyl-2-pentanone (MBK) Naphthalene Naphthalene Styrene Styrene Styrene 1,1,2,2-Tetrachloroethane	<0.052 <0.026 <0.0052 <0.0052 <0.0052 <0.0052	<0.057 <0.028 <0.0057 <0.0057 <0.0057	<0.052 <0.026	<0.053 <0.470 <0.095 <0.0053 <0.0053	10 <0.051 <0.0051 <0.0051 <0.0051 <0.0051 <0.0051	<0.06 <0.03 <0.096 <0.006 <0.006		<0.057 <0.029	12 <0.058 <0.029 <0.0058 <0.0058 <0.0058 <0.0058	<0.059 <0.0059 <0.0059 <0.0059 <0.0059	<0.057 <0.0057 <0.0057 <0.0057 <0.0057	<0.056 <0.0056 <0.0056		<0.054 <0.0054 <0.0054 <0.0054 <0.0054	<0.055 <0.0055 <0.0055 <0.0055 <0.0055	<0.054 NA <0.0054 <0.0054 <0.0054	<0.056 NA <0.0056 <0.0056 <0.0056	<0.055 <0.0055 <0.0055 <0.0055 <0.0055	<0.051 <0.0051 <0.0051 <0.0051 <0.0051	<0.180 <0.018 <0.018 <0.018	<0.056 <0.0056 <0.0056 <0.0056 <0.0056	<0.054 <0.0054 <0.0054 <0.0054 <0.0054	111 <0.054 <0.0054 <0.0054 <0.0054 <0.0054 <0.0054	1 <0.056 <0.0056 <0.0056 <0.0056 <0.0056	<0.057	111 <0.053 <0.0053 <0.0053 <0.0053 <0.0053 <0.0053		NA 1,000 10,000 1,000 NA 24.62 3.20	NA 1,000 10,000 1,000 ⁽³⁾ 410,000 ⁽³⁾ 75.91 75.41
Methyl Ethyl Ketone	<0.100 <0.010				<0.051 <0.010	<0.12 <0.012	110.0> 11.0>	<0.11 <0.011	<0.12 <0.012			<0.056 <0.011	<0.054 <0.011							T			<0.054 <0.011		<0.057 <0.011	<0.053 <0.011		1,000	1,000
Methylene chloride	023	<0.0057 <0.028			<0.0051 <0.025		<0.0057 <0.028	<0.0057 <0.029	<0.0058 <0.029			<0.0056 <0.028	<0.0054 <0.027			<0.0054 <0.027		<0.0055 0.286		1			<0.0054 <0.027		<0.0057 <0.028	<0.0053 <0.026	ŀ	1,000" 85.3	1,000 ⁽²⁾ 816 ⁽²⁾
(sobropylbenzene	<0.0052				<0.0051 <0.0	<0.006	<0.0057 <0.0	<0.0057 <0.0	<0.0058 <0.0			<0.0056 <0.0	<0.0054 <0.0					5		Ť			<0.0054 <0.0		<0.0057 <0.0	<0.0053 <0.0	1	1,000	647 ⁽²⁾ 1.
ənadiəmobol	<0.010	<0.011	<0.010	<0.011	<0.010	<0.012	<0.011	(10.0>	<0.012	<0.012	<0.01	<0.011	-0,01E	<0.011	<0.01	<0.011	<0.011	<0.01	<0.010	<0.036	<0.01	<0.011	<0.011	<0.011	<0.011	<0.011		NA.	NA.
erachlorobutadiene	<0.0052	<0.0057	<0.0052	<0.095	<0.0051	<0.006	<0.0057	<0.0057	<0.0058	<0.0059	<0.0057	<0.0056	<0.0054	<0.0054	<0,0055	<0.0054	<0.0056	<0.0055	<0.0051	<0.018	<0.00056	<0.0054	<0.0054	<0.0056	<0.0057	<0.0053		8.21	1.78
3-Hexanone	0.05		<0.052	<0.053	<0.051	<0.06	<0.057	<0.057	<0.058	<0.059	<0.057	<0.056	<0.054	<0.054	<0.055	<0.054	<0.056	<0.055	<0.051	<0.180	SU,U56	<0.054	<0.054	<0.056	<0.057	<0.053		NA	NA
Ethyl methacrylate									3 <0.058			5 <0.011	110.0>										4 <0.011		7 <0.011		-	NA 0	NA 0
Ethylbenzene	2	1				<0.006	2		8 <0.0058				4 <0.0054							1				6 <0.0056	7 <0.0057		ŀ	1,000	000'1
els-1,3-Dichloropropene	2 <0.0				51 <0.005	900'0> 9	57 <0.005	57 <0.0057	58 <0.0058			56 <0.0056	54 <0.0054	Ì			56 <0.0056				1	54 <0.0054	54 <0.0054		57 <0.0057	53 <0.0053	-	VA VA	NA NA
-1-Dichloropropene	0.0>	012				900'0> 90		7500.057	8500.0> 850				354 <0.0054								П		354 <0.0054	356 <0.0056	300:0> 750	53 <0.005		N. 05.40	209 ⁽²⁾ NA
Lab Sample No.	291846 <0.005.	Г	291851 <0.0052		292259 <0.005		292404 <0.0057	292406 <0.0057	2411 <0.0058			292573 <0.0056	290206 <0.0054							Ì	П		292252 <0.0054		292243 <0.0057	292245 <0.005		9	20
Depth Sampled Lab Signification (feet)							0-2 292		0-2 292411				0-2 290			0-2 291	1 291			0-2 292		0-2 292			0-2 292				
Dec Sampled (fe					5/4/2001 0	5/9/2001 0	5/9/2001 0	5/9/2001 0	5/9/2001 0			5/10/2001 0	4/10/2001 0				4/25/2001	_		-	+		5/4/2001 0		5/4/2001 0	5/4/2001 0		rface Soil"	Is Surface Soil(11)
Sample No.	rface	-	-		A1 Sidewall 5 Surface	A2 Sidewall I Surface	A2 Sidewall 2 Surface 5	A2 Sidewall 3 Surface	A2 Sidewall 4 Surface			A2 Sidewall 7 Surface 5.	A3 Sidewall I Surface 4,				5.		-	+			A4 Sidewall 2 Surface 5		A5 Sidewall 2 Surface 5	AS Sidewall 3 Surface		II Residential Cleanup Goals Surface Soil"	II Non-Residential Cleanup Goals Surface Soil

e last page for footnotes.

Excavation Confirmation Surface Soi Former General N Allison Gar Turbin Indianapo

Table 12a - Excavation Confirm

Reference 36

J.2,2,1't'setrachloroethane	<0.0054	<0.0057	<0.0057	<0.0054	<0.0057	<0.0056	<0.0056	<0.0053	<0.0053	<0.0054	<0.0059	900.0>	<0.0055	<0.0054	3.20		75.41			
anscheoroldasmaT-2,1,1,1	<0.0054	<0.0057	<0.0057	<0.0054	<0.0057	<0.0056	<0.0056	<0.0053	<0.0053	<0.0054	<0.0059	<0.006	<0.0055	<0.0054	24.62		75.91			
Styrene	<0.0054	<0.0057	<0.0057	<0.0054	<0.0057	<0.0056	<0.0056		<0.0053	<0.0054	<0.0059	900:0>	<0.0055	<0.0054	42		410,000 ⁽³⁾			
n-Propylbenzene		<0.0057	<0.0057	<0.0054	<0.0057	<0.0056	<0.0056	33	<0.0053	<0.0054	-0.0059		<0.00055	<0.0054	1 000		1,000(2)			
Suphthalene	NA.	<0.00057	<0.028	NA	<0,0057	Ė	<0.028		<0.027	<0.027	<0.0059			<0.027	000001		10,000			
4-Methyl-2-pentanone (MIBK)	<0.054	<0.057	<0.0057	<0.054	<0.057		<0.056			<0.0054	650.05	<0.060	<0.055	<0.0054	1 000		1,000			
Methyl(tert) butyl ether (MTBE)		<0.011	<0.011	<0.011	<0.011		<0.011			<0.011	<0.012	<0.012	<0.011	<0.011	VZ.		NA			
Мейуу! Ейлу! Кейопе		<0.057	<0.110	<0.107	<0.057	<0.110	<0.110	<0.110	0.110	<0.110	<0.059	090'0>	<0.110	<0.110	1 000		1,000			
удециλјене срјоцде	0,163 E	590'0	<0.028	0,118 E.	<0.044	<0.028	<0.028	<0.027	<0.027	<0.027	0.049	<0.030	<0.027	<0.027	25 3(2)		816			
b-Jsopropyfloluene	<0.0054	<0.0057	<0.0057	<0.0054	<0.0057	<0.0056	<0.0056	<0.0053	<0.0053	<0.0054	<0.0059	<0.006	<0.0055	<0.0054	1 000(2)		1,000(2)			
geobiobálpsuzene		<0.0057	<0.0057	<0.0054	<0.0057	<0.0056	<0.0056	<0.0053	<0.0053		<0.0059	<0.006	<0.0055	<0.0054	7,0001		647(2)			
Годошецияне		1100>	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.012	<0.012	<0.011	<0.011	42		NA			
Hexachlorobutadiene	<0.0054	<0.0057	<0.0057	<0.0054	<0.0057	<0.0056	<0.0056	<0.0053	<0.0053	<0.0054	<0.0059	>0000	<0.0055	<0.0054	16.8		1.78			
2-Hexanone	<0.054	<0.057	<0.057	<0.054	<0.057	<0.056	<0.056	<0.053	<0.053	<0.054	<0.059	<0.060	<0.055	<0.054	N.		NA			
Ethyl methacrylate	<0.054	<0.011	<0.057	<0.054	<0.011	<0.056	<0.056	<0.053	<0.053	<0.054	<0.012	<0.012	<0.055	<0.054	V.V	100	NA			
Ethylbenzene	<0.0054	-<0.0057	<0.0057	<0.0054	<0.0057	9500.0>	<0.0056	<0.0053	<0.0053	<0.0054	<0.0059	<0.006	<0.0055	<0.0054	1 000	out t	1,000			
snsqorqoroldəld-E,1-snırı	<0.0054	<0.0057	<0.0057	<0.0054	<0.0057	<0.0056	<0.0056	<0.0053	<0.0053	<0.0054	<0.0059	<0.006	<0.0055	<0.0054	VX.		AN			
ede-fi-3-Dichloropropene	<0.0054	<0.0057	<0.0057	<0.0054	<0.0057	<0.0056	<0.0056	<0.0053	<0.0053	<0.0054	<0.0059	>0.000	<0.0055	<0.0054	VA	100	NA			
9n9qorqorolfaid-1,1	<0.0054	<0.0057	<0.0057	<0.0054	<0.0057	<0.0056	<0.0056	<0.0053	<0.0053	<0.0054	<0.0059	90000>	<0.0055	<0.0054	CARGO.	0.40	200/2)			
Lab Sample No.	291426	293507	291856	291432	293503	291857	291861	291858	291859	291863	290214	290217	291864	291865		Total Control		Soul		
Depth Sampled 1	-	0.5	1.5	-	-	1.5	0.5	1.5	1.5	1.5	0.5	0-2	1.5	1.5		The second	00	ntial Cleanup (Icamp Goal	
Date Sampled	4/25/2001	5/22/2001	5/1/2001	4/25/2001	5/22/2001	5/1/2001	5/1/2001	5/1/2001	5/1/2001	5/1/2001	4/10/2001	4/10/2001	5/1/2001	5/1/2001	Company South	s southern south	Goals Surface Soil	P Tier II Non-Reside	P Tier II Residential	
Sample No.	A6 Sidewall 1 Surface	A6 Sidewall In Surface	A6 Sidewall 2 Surface	A6 Sidewall 3 Surface	A6 Sidewall 3a Surface	A7 Floor 1 Surface	A7 Floor Surface Dup.	A7 Sidewall 1 Surface	A7 Sidewall 2 Surface	A7 Sidewall 3 Surface	A8 Sidewall 1 Surface	A8 Sidewall 2 Surface	A8 Sidewall 3 Surface	A8 Sidewall 4 Surface	His or and the comment of the commen	id it restuction creating coa	er II Non-Residential Cleanup Goals Surface Soil	steeted compound exceeds the VRP Tier II Non-Residential Clearup Goa	rected compound exceeds the VRP Tier II Residential Cleanup Go	Mary Mary Control of Street

Reference 36 Page 220

Table 12a - Excavation Confin

Xylenes, Total	<0.016	<0.017	<0.015	<0.016	<0.0051	<0.018	<0.017	<0.017	<0.017	<0.0059	<0.0057	<0.0056	<0.0054	<0.0054	<0.0055	< 0.0054	<0.017	<0.017	<0.0051	<0.018	<0.0056	<0.0054	<0.0054	<0.0056	<0.0057	<0.0053	1,000	1 000
Vinyl chloride	<0.010	<0.011	<0.010	<0.011	<0.010	<0.012	<0.011	<0.011	<0.012	<0.012	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.010	<0.036	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	0.034	000
Vinyl acetate	<0.052	<0.057	<0.052	<0.053	<0.010	90'0>	<0.057	<0.057	<0.058	<0.012	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	950:0>	<0.055	<0.010	<0.036	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	NA	42
ənəxnədlyiləmirT-2,5,1	<0.0052	<0.0057	<0.0052	<0.095	<0.0051	>00.006	<0.0057	<0.0057	<0.0058	<0.0059	<0.0057	<0.0056	<0.0054	<0.0054	<0.0055	<0.0054	<0.0056	0.0068	<0.0051	<0.018	<0.0056	<0.0054	<0.0054	<0.0056	<0.0057	<0.0053	1,000	434(4)
ənəxnədiyiləmirT-Þ,£,l	<0.0052	<0.0057	<0.0052	<0.095	<0.0051	900'0>	<0.0057	<0.0057	<0.0058	<0.0059	<0.0057	<0.0056	<0.0054	<0.0054	<0.0055	<0.0054	<0.0056	0.015	<0.0051	<0.018	<0.0056	<0.0054	<0.0054	<0.0056	<0.0057	<0.0053	1,000	1.0000
1,2,3-Trichloropropanc	<0.0052	<0.0057	<0.0052	<0.095	<0.0051	<0.006	<0.0057	<0.0057	<0.0058	<0.0059	<0.0057	<0.0056	<0.0054	<0.0054	<0.0055	<0.0054	<0.0056	<0.0055	<0.0051	<0.018	<0.0056	<0.0054	<0.0054	<0.0056	<0.0057	<0.0053	NA	N.
Trichlorofluoromethane	<0.0052	<0.0057	<0.0052	<0.0053	<0.0051	<0.006	<0.0057	<0.0057	<0.0058	<0.0059	<0.0057	<0.0056	<0.0054	<0.0054	<0.0055	<0.0054	<0.0056	<0.0055	<0.0051	<0.018	<0.0056	<0.0054	<0.0054	<0.0056	<0.0057	<0.0053	1,000'21	1.000(2)
Trichloroethene	<0.0052	6,0007	<0.0052	13	0.023	0,011	0,011	0.028	0.037	<0.0059	<0.0057	0.0064	<0.0054	<0.0054	<0.0055	0,0065	0.011	<0.0055	980'0	<0.018	0.0093	<0.0054	0.17	6,0685	<0.0057	<0.0053	58.18	74.07
onsultaorothairT-2,1,1	12		<0.0052	<0.0053	<0.0051	<0.006	<0.0057	<0.0057	<0.0058	<0.0059	<0.0057	<0.0056	<0.0054	<0.0054	<0.0055	<0.0054	<0.0056	<0.0055	<0.0051	<0.018	<0.0056	<0.0054	<0.0054	<0.0056	<0.0057	<0.0053	11.23	27.74
onsidrovoldoirT-I,I,I	<0.0052	<0.0057	<0,0052	<0.0053	<0.0051	<0.006	<0.0057	<0.0057	<0.0058	<0.0059	<0.0057	<0.0056	<0.0054	<0.0054	<0.0055	<0.0054	<0.0056	<0.0055	<0.0051	<0.018	<0.0056	<0.0054	<0.0054	<0.0056	<0.0057	<0.0053	1,000	1 000
1,2,4.Trichlorobenzene	<0.0052	<0.0057	<0.0052	<0.095	<0.0051	<0.006	<0.0057	<0.0057	<0.0058	<0.0059	<0.0057	<0.0056	<0.0054	<0.0054	<0.0055	<0.0054	<0.0056	<0.0055	<0.0051	<0.018	<0.0056	<0.0054	<0.0054	<0.0056	<0.0057	<0.0053	2,700	00001
ansznadoroldairT-E,2,1	<0.0052	<0.0057	<0.0052	<0.095	<0.0051	>00000	<0.0057	<0.0057	<0.0058	<0.0059	<0.0057	<0.0056	<0.0054	<0.0054	<0.0055	<0.0054	<0.0056	<0.0055	<0.0051	<0.018	<0.0056	<0.0054	<0.0054	<0.0056	<0.0057	<0.0053	NA	V.V
Toluene	<0.0052	<0.0057	<0.0052	<0.0053	<0,0051	900'0>	<0.0057	<0.0057	<0.0058	<0.00059	<0.0057	<0.0056	<0.0054	<0.0054	<0.0055	<0.021	<0.0056	<0.0055	<0.0051	<0.018	<0.0056	<0.0054	<0.0054	<0.0056	<0.0057	<0.0053	1,000	1 000
Гейтасиютоейене	<0.0052	<0.0057	<0.0052	<0.0053	<0.0051	>0.006	<0.0057	<0.0057	<0.0058	<0.0059	<0.0057	>0,0056	<0.0054	<0.0054	<0.0055	<0.0054	<0.0056	<0.0055	<0.0051	<0.018	<0.0056	<0.0054	<0.0054	<0.0056	<0.0057	<0.0053	12.56	101 23
Lab Sample No.	291846	291849	291851	291853	292259	292402	292404	292406	292411	292569	292571	292573	290206	290208	290211	291216	291422	291424	292257	292263	292265	292247	292252	292240	292243	292245		No. of Contract of
Depth Sampled (feet)	1.5	1.5	1.5	1.5	0.5	0-2	0.5	0.5	0.5	0.5	0.5	0.5	0-2	0.5	0-2	0.5	1	-	0-2	0-2	0-2	0-2	0-2	0.5	0.5	0.5		004
Date Sampled	5/1/2001	5/1/2001	5/1/2001	5/1/2001	5/4/2001	5/9/2001	5/9/2001	5/9/2001	5/9/2001	5/10/2001	5/10/2001	5/10/2001	4/10/2001	4/10/2001	4/10/2001	4/23/2001	4/25/2001	4/25/2001	5/4/2001	5/4/2001	5/4/2001	5/4/2001	5/4/2001	5/4/2001	5/4/2001	5/4/2001	s Surface Soil	Coale Curface Co.
Sample No.	Al Sidewall I Surface	Al Sidewall 2 Surface	Al Sidewall 3 Surface	Al Sidewall 4 Surface	Al Sidewall 5 Surface	A2 Sidewall 1 Surface	A2 Sidewall 2 Surface	A2 Sidewall 3 Surface	A2 Sidewall 4 Surface	A2 Sidewall 5 Surface	A2 Sidewall 6 Surface	A2 Sidewall 7 Surface	A3 Sidewall 1 Surface	A3 Sidewall 2 Surface	A3 Sidewall 3 Surface	A3 Sidewall 4 Surface	A3 Sidewall 6 Surface	A3 Sidewall 7 Surface	A3 Sidewall 8 Surface	A3 Sidewall 9 Surface	A3 Sidewall 10 Surface	A4 Sidewall I Surface	A4 Sidewall 2 Surface	A5 Sidewall 1 Surface	A5 Sidewall 2 Surface	A5 Sidewall 3 Surface	er II Residential Cleanup Goals Surface Soil'	Circle and Company of the Company of

Reference 36

Page 8 of 8

Page 8 of 8

Page 8 of 8

Xylenes, Total	<0.016	<0.0057	<0.017	<0.016	<0.0057	<0.017	<0.017	<0.016	>0.016	<0.016	<0.0059	<0.006	<0.016	<0.016	1,000	1,000
Vinyl chloride	110.0>	<0.011	<0.011	<0.011	110.0>	<0.011	<0.011	<0.011	<0.011	<0.011	<0.012	<0.012	<0.011	<0.011	0.034	0.02
Vinyl acetate	<0.054	<0.011	<0.057	<0.054	<0.011	950.0>	<0.056	<0.053	<0.053	<0.054	<0.012	<0.012	<0.055	<0.054	NA	NA
anaxnadlythamirT-&,&,1	<0.0054	<0.0057	<0.0057	<0.0054	<0.0057	<0.0056	<0.0056	<0.0053	<0.0053	<0.0054	<0.0059	900'0>	<0.0055	<0.0054	1,000 ⁽²⁾	435(2)
ənəxnədiyiləmirT-4,2,1	<0.0054	<0.0057	<0.0057	<0.0054	<0.0057	<0.0056	<0.0056	<0.0053	<0,0053	<0.0054		>00.006	<0.0055	<0.0054	1,000	1,000
annqorqoroldəhT-£,2,1	<0.0054	<0.0057	<0.0057	<0.0054	<0.0057	<0.0056	-0.0056	<0.0053	<0.0053	<0.0054	<0.0059	<0.006	<0.0055	<0.0054	NA	NA
Trichlorofluoromethane	<0.0054	<0.0057	<0.0057	<0.0054	<0.0057	<0.0056	<0.0056	<0.0053	<0.0053	<0.0054	<0.0059	>0.006	<0.0055	<0.0054	1,000	1,000
Trichloroethene	<0.0054	0.012	<0.0057	0.0086	<0.0057	<0.0056	<0.0056	0.0079	<0.0053	<0.0054	0,237	0.052	<0.0055	<0.0054	58.18	24.97
anathaoroldairT-£,I,I	<0.0054	<0.0057	<0.0057	<0.0054	<0.0057	<0.0056	<0.0056	<0.0053	<0.0053	<0.0054	<0.0059	900:0>	<0.0055	<0,0054	11.23	22.74
1,1,1-Trichloroethane	<0.0054	<0.0057	<0.0057	<0.0054	<0.0057	<0.0056	<0.0056	<0.0053	<0.0053	<0.0054	<0.0059	>0.006	<0.0055	<0.0054	1,000	1,000
anssnedoroldoirT-P,2,1	<0.0054	<0.0057	<0.0057	<0.0054	<0.0057	<0.0056	<0.0056	<0.0053	<0.0053	<0.0054	<0.0059	>0.006	<0.0055	<0.0054	2,700	10,000
anaxnadovoldairT-E,2,1	<0.0054	<0.0057	<0.0057	<0.0054	<0.0057	<0.0056	<0.0056	<0.0053	<0.0053	<0.0054	<0.0059	<0.006	<0.0055	<0.0054	NA	NA
Toluene	<0.0054	<0.0057	<0.00057	<0.0054	<0.0057	<0.0056	<0.0056	<0.0053	<0.0053	<0.0054	<0.0059	900.0>	<0.0055	<0.0054	1,000	1,000
Fetrachloroethene	<0.0054	<0.0057	<0.0057	<0.0054	<0.0057	<0.0056	<0.0056	<0.0053	<0.0053	<0.0054	6500.0>	900'0>	<0.0055	<0.0054	12.56	101.23
Lab Sample No.	291426	293507	291856	291432	293503	291857	291861	291858	291859	291863	290214	290217	291864	291865		
Depth Sampled (feet)	-	0.2	1.5		-	1.5	0-2	1.5	1.5	1.5	0-2	0-2	1.5	1.5		(L)
Dare Samuled	4/25/2001	5/22/2001	5/1/2001	4/25/2001	5/22/2001	\$/1/2001	5/1/2001	5/1/2001	5/1/2001	5/1/2001	4/10/2001	4/10/2001	5/1/2001	5/1/2001	als Surface Soil ⁽¹⁾	p Goals Surface So
Sommite No.	A6 Sidewall 1 Surface	A6 Sidewall In Surface	A6 Sidewall 2 Surface	A6 Sidewall 3 Surface	A6 Sidewall 3a Surface	A7 Floor 1 Surface	A7 Floor I Surface Dun.	A7 Sidewall 1 Surface	A7 Sidewall 2 Surface	A7 Sidewall 3 Surface	AR Sidewall 1 Surface	A8 Sidewall 2 Surface	A8 Sidewall 3 Surface	A8 Sidewall 4 Surface	Tier II Residential Cleanup Goals Surface Soil	Tier II Non-Residential Cleanup Goals Surface Soil ¹

Table 12a

Table 12a

Table 12b

Former Ceneral Malytical Results for VOCs (mg/kg)

Former Ceneral Motors Corporation

Allison Gas Turbine Division, Plant 10

Indiampolis, Indiam

IDEM VRP #6991004

KERAMIDA Project No. 2829E.

Surface Soil - PAHs Page 1 of 1

Table 12b - Excavation Confirmation

A8 Sidewall 3 Surface	3/1/2001	2	291804		Q070	<0.05		<0.0>	00.00				CO'70		<0.05	S0.30	CO-30	50,30	C0,30
A8 Sidewall 4 Surface	5/1/2001	1.5	291865	<0.35	<0.35	<0.35	<0.35	<0.35	<0.35	<0.35	<0.35	<0.35	<0.35	<0.35	<0.35	<0.35	<0.35	<0.35	<0.35
	The state of the s		The second second				П												
Tier II Residential Cleanup Goals Surface So	ls Surface Soil(1)			10,000	5,400(2)	10,000	0.88	99'0	88'0	1,6200	8.77	1978	99'0	2,160	10,000	88'0	10,000	260(5)	8,100
		THE RESERVE		-		В								1				100000000000000000000000000000000000000	
Tier II Non-Residential Cleanup Goals Surface Soil	Goals Surface Soil	(n)l		10,000	4,570(2)	10,000	79.45	7.94	79.45	10,000(2)	794.52	7,945.21	7.95	10,000	10,000	79.45	10,000	26000	10,000
Detected compound exceeds the VRP Tier II Non-Residential Cleanup Go	RP Tier II Non-Reside	central Cleanup G	ioal																
Detected compound exceeds the VRP Tier II Residential C	RP Tier II Residential	Cleanup Goal																	
Detected compound is below the Y	is below the VRP Ties II Residential	Cleaning Goal																	
PAHs = Polynaciear Aromatic Hydrocarbons	rocarbons	Samples analyz	Samples analyzed using EPA SW-846 Method 8310	W-846 Method	8310														

Appendix F Tier II Cleanup Goals-Hurran Health Evaluation by Office of Environmental Response, July 1996.

ttion Program, Dated 4/21/98.

Table 12b
Infirmation Surface Soil Analytical Results for PAHs (mg/kg)
Former General Moiors Corporation
Alison Gas Turbine Division, Plant 10
Indiamapolis, Indiana
IDEM VRP #6991004
KERAMIDA Project No. 2829E

henanthrene

Indeno (1,2,3-ed)

Dibenzo (a,h)

HOTARINERS genzo (k)

Benzo (ghi)

Benzo (b)

Benzo (a)

привсепе

Acenaphthylene

Lab Sample No.

Date Sampled

mg/kg = micrograms per kilogram NA = Not Applicable

¹⁰ Indiana Department of Environmental Management Voluntary Remediation Program

²⁰ Calculated using surrogate toxicity values and Tier II equations.

²⁰ Tier I Health Protective Levels for Phenanthrene, Jodomethane and Acroben Technica

Reference 36 Page 223

Table 12c

Excavation Confirmation Surface Soil Analytical Results for Metals (mg/kg) **Former General Motors Corporation** Allison Gas Turbine Division, Plant 10 Indianapolis, Indiana IDEM VRP #6991004 KERAMIDA Project No. 2829E

Sample No.	Date Sampled	Depth Sampled (feet)	Lab Sample No.	Total Cadmium	Total Chromium	Total Lea
A1 Sidewall 1 Surface	5/1/2001	1.5	291846	< 0.52	11	1
A1 Sidewall 2 Surface	5/1/2001	1.5	291849	2.0	14	
A1 Sidewall 3 Surface	5/1/2001	1.5	291851	< 0.52	13	2
A1 Sidewall 4 Surface	5/1/2001	1.5	291853	1.4	26	1,2
A1 Sidewall 5 Surface	5/4/2001	0-2	292259	< 0.51	6	
A2 Sidewall 1 Surface	5/9/2001	0-2	292402	<0.6	12	
A2 Sidewall 2 Surface	5/9/2001	0-2	292404	0.9	12	
A2 Sidewall 3 Surface	5/9/2001	0-2	292406	8.6	24	1,1
A2 Sidewall 4 Surface	5/9/2001	0-2	292411	<0.58	9.1	
A2 Sidewall 5 Surface	5/10/2001	0-2	292569	2.1	13	
A2 Sidewall 6 Surface	5/10/2001	0-2	292571	0.98	14	
A2 Sidewall 7 Surface	5/10/2001	0-2	292573	1.7	16	
A3 Sidewall 1 Surface	4/10/2001	0-2	290206	<0.54	15	
A3 Sidewall 2 Surface	4/10/2001	0-2	290208	2.3	30	
A3 Sidewall 3 Surface	4/10/2001	0-2	290211	2.4	20	
A3 Sidewall 4 Surface	4/23/2001	0-2	291216	6.1	19	4
A3 Sidewall 6 Surface	4/25/2001	1	291422	2.7	17	
A3 Sidewall 7 Surface	4/25/2001	1	291424	4.1	18	
A3 Sidewall 8 Surface	5/4/2001	0-2	292257	14.0	25	
A3 Sidewall 9 Surface	5/4/2001	0-2	292263	9.9	34	
A3 Sidewall 10 Surface	5/4/2001	0-2	292265	<0.56	11	
A4 Sidewall 1 Surface	5/4/2001	0-2	292247	4.6	18	4
A4 Sidewall 2 Surface	5/4/2001	0-2	292252		13	
A5 Sidewall 1 Surface	5/4/2001	0-2	292240	2.2	42	A CONTRACTOR OF THE PARTY OF TH
A5 Sidewall 2 Surface	5/4/2001	0-2	292243	<0.57	14	WITH THE PARTY
A5 Sidewall 3 Surface	5/4/2001	0-2	292245	0.96	14	
A6 Sidewall 1 Surface	4/25/2001	1	291426	12	68	3.0
A6 Sidewall 1a Surface	5/22/2001	0-2	293507	85	86	2.0
A6 Sidewall 2 Surface	5/1/2001	1.5	291856	<0.57	11	
A6 Sidewall 3 Surface	4/25/2001	1	291432	7.4	53	1,3
A6 Sidewall 3a Surface	5/22/2001	1	293503	2.3	12	WANTED ST
A7 Floor 1 Surface	5/1/2001	1.5	291857	<0.56	10	
A7 Floor 1 Surface Dup.	5/1/2001	0-2	291861	<0.56	10	
A7 Sidewall 1 Surface	5/1/2001	1.5	291858	<0.53	10	
A7 Sidewall 2 Surface	5/1/2001	1.5	291859	<0.53		<4.3
A7 Sidewall 3 Surface	5/1/2001	1.5	291863	1.4	14	(4.3
A8 Sidewall 1 Surface	4/10/2001	0-2	290214	13	75	2,8
A8 Sidewall 2 Surface	4/10/2001	0-2	290217	16	49	1,5
A8 Sidewall 3 Surface	5/1/2001	1.5	291864	<0.55	14	Aye
A8 Sidewall 4 Surface	5/1/2001	1.5	291865	2.0	26	
110 Didewall 4 Dullace	5/1/2001		271003	2.0	201	COLUMN TO SERVICE STATE OF THE
er II Residential Cleanup C	Goals Surface Soil	1)		135	1,350	400 (2)
Marshall (Marin)	TENET CASTON SEED	APALE HARRIOTO				
er II Non-Residential Clear	nup Goals Surface	Soil(1)		1,020	10,000	1,000 (2)

Samples analyzed using EPA Method Series 6000/7000

mg/kg = milligrams per kilogram

(1) Indiana Department of Environmental Management Voluntary Remediation Program Resource Guide, Appendix F Tier II Cleanup Goals-Human Health Evaluation by Office of Environmental Response, July 1996.

⁽²⁾ IDEM VRP Interoffice Memo dated on January 26, 1998.

36

Table 13a - Excavation Confirmation Subsurface So

Table 13a

Cavation Confirmation Subsurface Soil Analytical Results for VOCs (mg/kg)

Former General Motors Corporation

Allison Gas Turbite Division, Plant 10

Indiampolis, Indiama

IDEM VRP #6991004

KERAMIDA Project No. 2829E

NA NA

NA NA urface Soil - VOCs Page 2 of 8 Table 13a - Excavation Confirmation Subs

	Y	V	V	.V	∇	·V		2 2	7 7	1	7 0	V	V	∇		V			A.	~	V.	V		-	V			V									
Chloroform	<0.021	<0.024	<0.022	<0.021	<0.021	<0.099	00100	00.000	00000	2000	<0.021	<0.022	<0.022	<0.820	<0.790	<0.022	<0.022	<0.022	<0.022	<0.021	<0.022	270'0>	60.00	<0.022	<0.882	<0.880	<1.76	<0.898	2.082	20.33							
Chloroethane	<0.011	<0.012	<0.011	<0.000>	<0.010	<0.049	0000	<0.049 <0.010	0000	1100	<0.011	<0.011	<0.011	<0,410	<0,400	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	17000	1100	<0.011	<0,435	<0.440	<0.878	<0.443	1,000	1,000							
Chlorodibromo- methane	<0.0053	<0.0059	<0.0056	<0.0052	<0.0052	<0.025	2000	C0,025	20,002	0 00054	<0.0053	<0.0055	<0.0054	<0.200	<0.200	<0.0054	<0.0054	<0.0055	<0.0055	<0.0053	<0.0055	<0.0054	0.0054	<0.0054	<0.223	<0.220	<0.439	<0.228	NA	NA							
Сијого-репхене	Ú	<0.0059	<0.0056	<0.0052	<0.0052	<0.025	2000	1	, _			Т		<0.200	<0.200	<0.0054				<0.0053	Т	40,000	Т	Т		<0.220		<0.228	11.10	803(2)							
Carbon tetrachloride		<0.0059	<0.0056	<0.0052	<0.0052	<0.025		<0.0025		T		1		<0.200	<0.200							<0.0054	Т	Т	Г	<0.220	c0.439	<0.228	NA	NA							
Carbon disulfide	00	<0.119	<0.111	<0.0052	<0.0052	<0.025		<0.025		Ť		Т	<0.0054	<0.200	<0.200	<0.0054	<0.0054		<0.109		T	40.108	T	T	T	<0.220	<0.439	<0.228	182(1)	1,300							
tert-Butylbenzene		> 6500.0>	<0.0056 <	<0.0052 <	<0.0052 <	<0.025 <		<0.025		т		100		<0.200	<0.200	<0.0054 <						<0.0054 <	-	1	т	<0.220 <	<0.439	<0.228	22.01 ^{cD}	898							
acc-garàjpeuxeue		<0.0059	<0.0056	<0.0052	<0.0052	<0.025		<0.005		+		0.946		<0.200	<0.200	<0.0054	<0.0054	<0.0055	<0.0055	<0.0053	<0.0055	<0.0054	00110	<0.0054	т	<0.220	<0.439	1.02	30.100	725(2)							
n-Butylbenzene		<0.0059	<0.0056	<0.0052	<0.0052	<0.025	2000	<0.000 0.0000 0.00	200,005	10000	<0.0053	0.13	<0.0054	<0.200	<0.200	<0.0054	<0.0054	<0.0055	<0.0055	<0.0053	<0.0055	40.0054	0110	<0.0054	<0.223	<0.220	<0.439	2.28	33.5(2)	972(2)							
Bromomethane (Methyl Bromide)	<0.011	<0.012	<0.011	<0.010	<0.010	<0.049	01000	C0.049	0000	01000	<0.011	<0.011	<0.011	<0.410	<0.400	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	11000	1100	<0.011	<0.435	<0.440	<0.878	<0.443	NA	NA							
штоїотога		<0.0059	<0.0056	10	<0.0052	<0.025		1	200000	T.		<0.0055	<0.0054	<0,200	<0.200	<0.0054	<0.0054	<0.0055	<0.0055	<0.0053	<0.0055	<0.0054	200000	<0.0054	<0.223	<0.220	<0.439	<0.228	NA	NA							
Bromodichloro- methane	53	<0.0059	<0.0056	<0.0052	<0.0052	<0.025		1	200002	Ţ,	<0.00054			<0.200	<0.200	.,	<0.0054	<0.0055	<0.0055	<0.0053	<0.0055	40,0054	20,005	<0.0054	<0.223	<0.220	<0.439	<0.228	0.000389	0.692(2)							
Бготосілого- тейзапе		< 0.0059	< 0.0056 <		<0.0052 <			<0.025		-		-		<0.200	<0.200	_	<0.0054 <		_			<0.0054			-		<0.439	<0.228	NA	NA							
Bromobenzene	122	<0.0059	<0.0056	<0.0052	<0.0052	<0.025		<0.025	<0.0052	40 OOEA	<0.0053	<0.0055	<0.0054	<0.200	<0.200	<0.0054	<0.0054	<0.0055	<0.0055	<0.0053	<0.0055	<0.0054	000000	<0.0054	<0.223	<0.220	<0.439	<0.228	NA	NA							
Benzene	<0.0053	<0.0059	<0.0056	<0.0052	<0.0052	<0.025	-	<0.025	200002	20,003	<0.0054	<0.0055	<0.0054	<0.200	<0.200	<0.0054	<0.0054	<0.0055	<0.0055	<0.0053	<0.0055	<0.0054	000000	<0.0054	<0.223	<0.220	<0.439	<0.228	0.059	4.77							
Acrylonitrile	<0.265	<0.297	<0.278	<0.260	<0.260	<1.2		<1.2	0970>	00705	0.200	<0.270	<0.270	01>	01>	<0.270	<0.270	<0.276	<0.273	<0.265	<0.277	<0.271	C0.279	<0.270	-	-11>	<22	<11.2	NA	N.							
Acrolein	<0.265	<0.593	<0.556	<0.260	<0.260	<1.2		<1.2 0.920	<0.260	00000	077.05	<0.270	<0.270	<10	<10	<0.270	<0.270	<0,552	<0.545	<0.531	<0.553	<0.541	166.05	<0.540	1	411	-22	<11.2	NA	NA							
эцонээү	0.106	0.119	0,111	0.100	0.100	0.490		<0.500	0.100	0.100	0110	0.110	0.110	C4.1	04.0	0.110	<0.110	0.110	0.109	<0.106	0.111	<0.108		0110			<8.76	<4.48	22.793	136.29							
Lab Sample No.	291217	291423 <			292264 <			Т	292235	1	292253	П		292241	292242		292246 <	291428				291431	T	Т	Τ	П	290213	290216			74		ated	ble	ion		
Depth Sampled (feet)	4	2.5	61	25-3	3	3.5	7	3.5	4 4		3.3	5	2	4	4	4	3.5	4	47	en:	2.5	10.10	7 4	5.5	5	2	60	3		Soil®	mini Cleanup Goa	Clearup Gost	E = result is estimated	NA = Not Applicable	oluntary Remedia o Goals-Human R	y 1996.	quations.
Date Sampled	4/23/2001	4/25/2001	4/25/2001	5/4/2001	5/4/2001	5/4/2001		5/4/2001	5/4/2001	1007457	5/4/2001	5/4/2001	5/4/2001	5/4/2001	5/4/2001	5/4/2001	5/4/2001	4/25/2001	4/25/2001	4/25/2001	4/25/2001	4/25/2001	44.27.2001	5/1/2001	4/10/2001	4/10/2001	4/10/2001	4/10/2001	Is Subsurface Soil	Goals Subsurface	IP Tier II Non-Reside	RP Tier II Residential		46 Method 8260	ental Management Vc ndix F Tier II Cleanup	umental Response, Ju-	ty values and Tier II o
Somple No.	A3 Sidewall 4 Subsurface	A3 Sidewall 6 Subsurface	A3 Sidewall 7 Subsurface	A3 Sidewall 8 Subsurface	A3 Sidewall 9 Subsurface	A3 Sidewall 10 Subsurface	A3 Sidewall 10 Subsurface	Dup.	A4 Floor 1	A+ F1301 Z	A4 Sidewall Subsurface A4 Sidewall 2 Subsurface	A5 Floor 1	A5 Floor 2	A5 Sidewall 1 Subsurface	A5 Sidewall Subsurface Dun	A5 Sidewall 2 Subsurface	A5 Sidewall 3 Subsurface	A6 Floor 1	A6 Floor 1 Dup	A6 Floor 2	A6 Sidewall Subsurface	A6 Sidewall 2 Subsurface	An Stoewall 5 Subsurface	A7 Sidewall 2 Subsurface	A& Floor 1	A8 Floor 2	A8 Sidewall Subsurface	A8 Sidewall 2 Subsurface	Tier II Residential Cleanup Goals Subsurface Soil ⁽¹⁾	Tier II Non-Residential Cleanup Goals Subsurface Soil ⁽¹⁾	excited compound exceeds the VRP	etected compound exceeds the VI	VOCs = Volatile Organic Compounds	Samples analyzed using EPA SW-846 Method 8260 mg/kg = milligrams per kilognam	O Indiana Department of Environmental Management Voluntary Remediation Program Resource Guide, Appendix F Tier II Cleanup Goids-Human Health	Evaluation by Office of Environmental Response, July 1996.	Calculated using surrogate toxicity values and Tier II equations.

Table 13a
Jean Confirmation Subsurface Soil Analytical Results for VOCs (mg/kg)
Former General Motors Corporation
Allison Gas Turbine Division, Plant 10
Indamapadis, Indama
IDEM VRE #6991904
KERAMIDA Project No. 2829E

Methyl Chloride)

Sample No.	Al Floor 1	Al Floor 2	A1 Sidewall I Subsurface	A1 Sidewall 2 Subsurface	A1 Sidewall 3 Subsurface	A1 Sidewall 4 Subsurface	A1 Sidewall 5 Subsurface	A2 Floor 1	A2 Floor 1 Dup.	A2 Floor 2	A2 Floor 3	AZ Floor 4	A2 Sidewall 1 Subsurface	A2 Sidewall 2 Subsurface	A2 Sidewall 3 Subsurface	A2 Sidewall 4 Subsurface	A2 Sidewall 6 Subsurface	A2 Sidewall 7 Subsurface	A2 Sidewall 7 Subsurface Dun.	A3 Eloor 1	A3 Floor 2	A3 Floor 3	A3 Floor 4	A3 Floor 5	. A3 Floor 5 Dup.	A3 Floor 6	A3 Floor 7	A3 Floor 8	A3 Floor 8	A3 Floor 9	A3 Floor 9	A3 Floor 10	A3 Sidewall 1 Subsurface	A3 Sidewall 2 Subsurface	A3 Sidewall 3 Subsurface	A3 Sidewall 3 Subsurface Dup.	TO THE REAL PROPERTY.	Tier II Residential Cleanup Goals Subsurface Soil(1)		Tier II Non-Residential Cleanup Goals Subsurface Soil"	elected compound exceeds to
Date Sampled	5/1/2001	5/1/2001	H		-	-		L	5/9/2001	5/9/2001	5/10/2001	-			-	5/9/2001				4/10/2001	4/10/2001	4/18/2001	4/18/2001	4/23/2001	4/23/2001	4/23/2001	4/23/2001	4/25/2001	5/4/2001	4/25/2001	5/4/2001	5/4/2001	c 4/10/2001	e 4/10/2001	c 4/10/2001	c 4/10/2001		Goals Subsurface Soil		anup Goals Subsurfac	s the VRP Tier II Non-Resigned
Depth Sampled (feet)	8	9	9	7	9	4	7	6	6	9	7	9	7	+	+ 1	4.5	3	5	,	5.9	59	9	9	6-7	6-7	9	9	4	+ -	4	4	4.5	4.5	3.5	4	4		(1)	a sell	e Soil"	d Cleanso Gost
Lab Sample No.	291848	291855	291847	291850	291852	291854	292260	292408	292409	292410	292576	292577	292403	292405	292407	202520	202522	292574	363696	2002013	290204	290693	290694	291218	291219	291220	291221	291420	202250	291421	292251	292256	290205	290207	290209	290210					Goal
1,2-Dibromo-3- Chloropropane	<0.110	<1.8	<0.110	<0.110	<0.110	<0.110	010'0>	<0.11	<12.1	<2.6	<0.048	<0,011	42.4	11.0	11.02	479	<0.007	110.0>	1100	11007	11007	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.111	40.010	<0.110	<0.011	<0.011	<0.0012	<0.012	<0.011	<0.011		NA	-	N.	
anadisomordidi-2,1	<0.0053	<0.0051	<0.0053	<0.0056	<0.0054	<0.0053	<0.0051	<0.0054	9.0>	<0.13	<0.024	<0.0054	<0.12	<0.0056	<0.0057	20.02 20.0057	<0.0058	<0.0056	9500 0×	-0.005s	<0.0055	<0.0054	<0.0055	<0.0054	<0.0054	<0.0055	<0.0056	<0.0056	<0.0051	<0.0055	<0.0054	<0.0054	<0.0059	<0.0059	<0.0057	<0.0057		NA		NN	
Dibromomethane (Methylene Bromide)	110	010.0>	<0.011			1100>	0	110.0>	<1.2	<0.26		1				40.04			1100	Τ			<0.011	<0.011	1				V0.010	T		<0.011	<0.0012	<0.012	<0.011	<0.011		NA	1	NA	
1,2-Dichlorobenzene	<0.0053	<0.092	<0.0053 <		13			<0.0054	> 9.0>	<0.13		÷		J	2	50.0057			-0.0056	Т	т			<0.0054					100000			<0.0054	<0.0059	<0.0059	<0.0057	<0.0057		2,524,23	000.00	10,000	
1,3-Dichlorobenzene	<0.0053 <0	<0.092 <0	60	950		<0.0053 <0	1500	0.54	9.0>	<0.13		0004	_		/500	20.12 20.0057	1	1	0 95000	-	950		<0.0055 <0	<0.0054 <0	<0.0054 <0		990		0.0001	055	054	<0.0054 <0	<0.0059 <0	<0.0059 <0	<0.0057 <0	0> 7500.0>		NA	H	NA	
orosensensensensensensensensensensensensens	<0.0053 <0.05	<0.092 <0.05	<0.0053 <0.053	Т		<0.0053 <0.053		<0.0054 <0.054	0.0> 9.	<0.13 <1.3		#	7		<0.057 <0.057	-0.0057 -0.011	1	<0.0056 <0.01	110.0> 9500.0>	+	۳		<0.0055 <0.01	<0.0054 <0.01	<0.0054 <0.01				<0.0051 <0.010 <0.010	100	Ť	<0.0054 <0.01	<0.0059 <0.0	<0.0059 <0.0	<0.051 <0.057	<0.0057 <0.011		0.897	-	34.67	
anethane 2-oroldold-4,4-anem	3 0	151 <0,100	53 <0.110		154 <0.110					-		<0.0	+	+	-	000	T		011 <0.056	I				111 <0.054			9	-	00000		000	011 <0.054	<0.0012 <0.059	<0.012 <0.059		750.057		NA	-	NA	
patene	-	-	Ť	Ť	Ť		İ	ND <0.0	9'0> QN	Ť	1	1	Ť	ND ON	1	T	T	Ť		T			Ė	İ			1				İ		Ť	Ì	Í			NA 40	H	NA I	
1,1-Dichloroethane	<0.0053 <0.005	<0.0051 <0.0051	<0.0053 <0.005	Ť	1	<0.0053 <0.0053		<0.0054 <0.0054	9.0>	3 <0.13	1	C0.0034 <0.0034	Ť	Ì.		20.05	T	<0.0056 <0.0056	950005	Ť	T	T	<0.0055 <0.0055	<0.0054 <0.0054					0.0051			<0.0054 <0.0054	<0.0059 <0.0059	<0.0059 <0.0059	<0.0057 <0.005	C0.0057 <0.0057		40.074 0.	ŀ	1,000	
1,2-Dichloroethane	053 <0.0053	051 <0.005	053 <0.0053	950 <0.0056	Ť	Ė	051 <0.005	054 <0.0054	9'0>		1	0.000	Ť	Ť	Ť	057 <0.0057	T	056 <0.0056	9500 -0 9056	T		Ė	055	054 <0.0054		Ì		Ť	100 0	Ť		054 <0.0054	6500.0> 6500	6500.0> 650	057 <0.005	7500057		0.025 0.	-	0.37 0.	
1,1-Dichloroethylene	053 <0.0053	150	053 <0.005	950 <0.0056	T	053 <0.0053		054		3	24	600	T	000000000000000000000000000000000000000	100	047	058 <0.0058		950	065 <0.0055	T		0.0002	054 <0.0054	054 <0,0054			056 <0.0056	100	055 <0.0055	80	054 <0.0054	059 <0.0059	059 <0.0059	200.057	7500.0> 750		0.084	H	0.080	
Dichloroethene trans-1,2- Dichloroethene		0.045 <0.0051	353 <0.0053			353 <0.0053		1.5	9.0> 6.4	0.33 <0.13	0.2 <0.024	00'00 T	à		C0.000	20000		12	0.0038	т			F	054 <0.0054		G		056 <0.0056	1500.00			054 <0.0054		059 <0.0059	057 <0.0057	7500.0057		17.14 3.2	H	102.49 19	
Dichloroethene 1,2-Dichloropropan	<0.0>	1500.051	53 <0.0053			53 <0.005		0.01 <0.0054	9:0>		T	1	T	SO <0.005c		T	T	56 <0.0056	9500.0>	Ť	Т		0087 <0.005	54 <0.0054				56 <0.0056	T	T	021	54 <0.0054	59 <0.005	59 <0.0059	57 <0.005	7200057		3.23 ⁽²⁾ N	(2)603	4	
omporopropropan	3 <0.005	(1 <0.005)	3 <0.005	9500.056		3 <0.005		4 <0.0054	9.0>			1	Ť	Ì	50,000			9500.0> 95	20.0056	T		Ĺ	55 <0.0055	54 <0.0054				56 <0.0056				54 <0.0054		6500.0> 65	57 <0.00	77 <0.0057	No.	NA NA	ŀ	NA NA	
oraqorqoroldəid-2,5	3 <0.0	1 <0.005	3 <0.005	6 <0.0056	4 <0.0054	3 <0.005			9'0>	Ì	<0.024	T			CO.005		Ť	9500.0> 9	6 <0.0056	T	T		5 <0.0055					6 <0.0056	T			4 <0.0054			7 <0.0057	7 <0.0057		NA NA	-	NA	
n-1-Dichloropropen	3 <0.005	1 <0.005	3 <0.005	6 <0.0056	4 <0.0054	3 <0.0053	1 <0.005		9.0>		<0.024	T	Ť	Ť	CO.000	1		6 <0.0056	6 <0.0056	T	T		5 <0.0055	4 <0.0054	Ì	Ť	Т	000000	T		4 <0.0054	4 <0.0054	6 <0.0059	60000>	7 <0.005	7 <0.0057		0.00764	1.020		
-E,1-zb	3 <0	500.0> 15	53 <0,0053	9500.0> 95	54 <0.0054	53 <0.0053	500.005	54 <0,0054	9:0>		<0.024	1	1	000000		67	T	9500.0> 95	95 <0.0056	T		0	55 <0.0055	54 <0.0054				000000	T		54 <0.0054	54 <0.0054	59 <0.0059	59 <0.0059	57 <0.005	7500.057		64 ⁽²⁾ NA	H	NA	
Dichloropropene	0>	51 <0.005	53 <0.005	56 <0.0056	54 <0.0054	53 <0.0053	_		9.0>		4 <0.024	Т	CO.12	1			1	56 <0.0056	56 <0.0056	1			55 <0.0055				1	200000		Т	54 <0.0054	54 <0.0054		100	57 <0.0057	57 <0.0057		A NA	H	A NA	
Ethylbenzene	<0.0052	<0.005	3 <0.0052	6 <0.0056	4 <0.0054	3 <0.0053	1500.051		9.0>	<0.13	0 0000		Ī	CU.U.D.O	T			5 <0.0056	0.0036	T			5 <0.0055					<0.0056	Т		4 <0.0054	4 <0.0054		Ì	200:05	7 <0.0057		834,372	1,000		
Ethyl methacrylate	<0.053	<0.051	<0.053	<0.056	<0.054	<0.053		0.2 <0.054	0.9>	<0.055	2007 <0.048		9	C0.050	T	1		110.0>	<0.011	T	0.011		<0.011					00000			110.05	<0.011			<0.011	<0.011		72 NA	47	-	

1,000

834,372

NA NA

× X

Š Z.

NA NA

NA NA

17.14

0.084 080'0

193(2)

102.49

1,000 40.074

NA ž

NA N

34.67 0.897

NA N'A

ace Soil - VOCs Page 4 of 8 Table 13a - Excavation Confirmation Subsurfa

A8 Sidewall 1 Subsurface	4/10/2001	3	290213	<0.878		<0.439 <0.878 <0.439	<0.43
A8 Sidewall 2 Subsurface	4/10/2001	171	290216	<0.443		<0.228 <0.443 <0.228	<0.228
Ter II Residential Cleanup Goals Subsurface Soil®	Is Subsurface Soil	0		AN.	Н	NA NA 2,524.2	2,524
Trer II Non-Residential Cleanup Goals Subsurface Soil ⁽¹⁾	Goals Subsurface	Soil		NA	NA		NA 10,000
Detected compound exceeds the VRP Tier II Non-Residential Cleaning Goal	tP Tier II Non-Resid	lential Cleanup C	load				
Extected compound exceeds the VRP Tier II Residential Cleanup Goal	P Tier II Residentia	Cleanup Goal					
Descript compound is below the VRP Ther II.1	th Tier II Relidentii	of Cheming Goal					
VOCs = Volatile Organic Compounds	spi	E = result is estimated	imated				
Samples analyzed using EPA SW-845 Method 8260	45 Method 8260						

nig/kg = nilligrams per kilogram

Ulradiana Department of Environmental Management Voluntary Remodiation
Program Resource Guide, Agpendit, F Tier Il Cheaning Goalsi-Human Health
Evaluation by Office of Environmental Response, July 1996.

²²Cabellated using aurrogate toxicity values and Tier II equations.

¹³Source: EPA Region 3 Risk-Based Concentration Table - October 1998 Updas

Table 13a
Trnation Subsurface Sold Analytical Results for VOCs (mg/kg)
Former General Motors Corporation
Allison Gas Turbine Division, Plant 10
Indianapolis, Indiana
IDEM VRP #6591004
KERAMIDA Project No. 2839E

Ethyl methaciylate

Strans-1,3-

S 1,1-Dichloropropene

0.00053 0.00053 0.00053

Scis-1,2-

3 Li-Dichlorocthylene

ansalromordid-2,1

Page 228

Page 201 - NOCs

Page 5 of 8

1,1,2- Trichloroethane	<0.0053	<0.0051	<0.0053	350000	400000	<0.0054	<0.0053	<0.0051	<0.0054	9.0>	<0.13	<0.024	<0.0054	<0.12	<0.0056	<0.0057	<0.12	<0.0057	<0.0058	<0.0056	<0.0056	<0.0055	<0.0055	<0.0054	<0.0055	-C0.003+	<0.0055	<0.0056	<0.0056	<0.0051	<0.0051			- 1		-1.	<0.00057	<0.0057	n	0.035	1.05	
1,1,1- Trichloroethane	<0.0053	<0.0051	<0.0053	-0 00sk	0.0000	<0.0054	<0.0053	<0.0051	<0.0054	9.0>	<0.13	<0.024	<0.0054	<0.12	<0.0056	<0.0057	<0.12	<0.0057	<0.0058	<0.0056	<0.0056	<0.0055	<0.0055	<0.0054	<0.0055	*C0.000	<0.0055	<0.0056	<0.0056	<0.0051	<0.0051	<0.0055	<0.0054	<0.0054	<0.0059	<0.0059	<0.0057	<0.0057		229,642	1,000	
-orofdəh T-4,2,1 ənəxnəd	<0.0053	<0.092	< 0.0053	95000	000000	<0.0054	<0.0053	<0.0051	<0.0054	9.0>	<0.13	<0.024	<0.0054	<0.12	<0.0056	<0.0057	<0.12	<0.0057	<0.0058	<0.0056	<0.0056	<0.0055	<0.0055	<0.0054	<0.0055	40,0004	<0.0005	<0.0056	<0.0056	<0.0051	<0.0051	<0.0055	<0.0054	<0.0054	<0.0059	<0.0059	<0.0057	<0.0057		235.033	1,405.37	
-oroldzirT-£,£,1 snaxnad	<0.0053	<0.092	<0.0053	70 000	50,0000	<0.0054	<0.0053	<0.0051	<0.0054	9.0>	<0.13	<0.024	<0.0054	<0.12	<0.0056	<0.0057	<0.12	<0.0057	<0.0058	<0.0056	<0.0056	<0.0055	<0.0055	<0.0054	<0.0055	<0.00094	<0.0004	<0.0056	<0.0056	<0.0051	<0.0051	<0.0055	<0.0054	<0.0054	<0.0059	<0.0059	<0.0057	<0.0057		NA	NA	
Toluene	<0.0053	<0.0051	<0.0053	70000	00000	<0,00054	<0.0053	<0.0051		9.0> 9	<0.13	<0.024	<0.0054	9<0.12	<0.0056	<0.0057	2<0.12	<0.0057	<0.0058	<0.0036	<0.0056	<0.0055	<0.0055	<0.0054	<0.00055	10.0	<0.000	<0.023	<0.0056	<0.0051	<0.0051	<0.0055	<0.0054	<0.0054	<0.0059	<0.0059	<0.0057	<0.0057		278.926	1,000	
Tetrachloroethene	<0.0053	0.01	<0.0053	-0.0056	000000	<0.0054	<0.0053	<0.0051	0.	0	<0.13	<0.024	<0,0054	100	<0.0056	<0.0057		<0.0057	<0.0058	<0.0056	<0.0056	<0.0055	<0.0055	<0.0054	<0.0055	40,0054	40.0004 40.0004	<0.0056	00	<0.0051	<0.0051	<0.0055	<0.0054	<0.0054	<0.0059	<0.0059	<0.0057	<0.0057		0.227	8.01	
1,1,2,2-Tetrachloro		<0.092	<0.0053	200000	000000	<0.0054	<0.0053	<0.0051	<0.0054	9.0>	<0.13	<0.024	<0.0054	<0.12	<0.0056	<0.0057	<0.12	<0.0057	<0.0058	<0.0056	<0.0056	<0.0055	<0.0055	<0.0054	<0.0055	PC0/0024	500000 P	<0.0056	<0.0056	<0.0051	<0.0051	<0.0055	<0.0054	<0.0054	<0.0059	<0.0059	<0.0057	<0.0057		0.044	0.21	
oroldzerzetrachloro ethane		<0.0051	<0.0053	720000	50,0000	<0,0054	<0.0053	<0.0051	<0.0054	9.0>	<0.13	<0.024	<0.0054	<0.12	<0.0056	<0.0057	<0.12	<0.0057	<0.0058	<0.0025	<0.0055	<0.0055	<0.0055	<0.0054	<0.0055	<0.0054 -0.0054	+00000	<0.0056	<0.0056	<0.0051	<0.0051	<0.0055	<0.0054	<0.0054	<0.0059	<0.0059	<0.0057	<0.0057		0.076	7.24	
Styrene	<0.0053	<0.0051	<0.0053	200005	000000	<0.0054	<0.0053	<0.0051	<0.0054	9:0>	<0.13	<0.024	<0.0054	<0.12	<0.0056	<0.0057	<0.12	<0.0057	<0.0058	<0.0056	<0.0056	<0.0055	<0.0055	<0.0054	<0.0055	<0.0054	40.005¢	950000	<0.0056	<0.0051	<0.0051	<0.0055	<0.0054	<0.0054	<0.0059	<0.0059	<0.0057	<0.0057		NA	410,000(3)	
n-Propyl-benzene	<0.0053	<0.092	<0.0053	20000	00000	<0.0054	<0.0053	<0.0051	5	9.0>	<0.13	6.5	<0.0054	0.2	<0.0056	<0.0057	<0.12	<0.0057	<0.0058	<0.0056	<0.0056	<0.0055	<0.0055	<0.0054	<0.0055	<0.0054	40,0034 40,0054	<0.0056 <0.0056	<0.0056	<0.0051	<0.0051	<0.0055	<0.0054	<0.0054	<0.0059	<0.0059	<0.0057	<0.0057		33.5(1)	97250	
Naphthalene	40.027	<0.460	A0.006	00000	S20.058	<0.027	<0.027	<0.0051	<0.027	<3.0	<0.65	0.20	<0.0054	<0.62	<0.028	<0.029	<0.62	<0.0057	<0.0058	<0.00056	<0.0056	<0.0055	<0.0055	<0.0054	<0.0055	NA	NA	NA	NA	<0.0051	<0.0051	NA	<0.0054	<0.0054	<0.0059	<0.0059	<0,0057	<0.0057		1,767.785	10.000	
(MIBK) 4-Methyl-2-	23	<0.051	C0.053	2000	<0.050	<0.054	<0.053	<0.051	<0.054	0.9>	<1.3	<0.240	<0.054	<1.2	<0.056	<0.057	<1.2 <1.2	<0.057	<0.058	<0.056	<0.056	<0.055	<0.055	<0.054	<0.055	<0.054	C0.054	98000	<0.056	<0.051	<0.051	<0.055	<0.054	<0.054	<0.059	<0,059	<0.057	<0.057		68.147	407.48	1
Methyl(tert) butyl ether (MTBE)	0.011	<0.010	<0.011	T	1			<0.010	<0.011		<0.26			<0.24		<0.011	<0.24	<0.011	<0.012	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	11000	<0.011	<0.011	<0.010	<0.010	<0.011	<0.011	<0.011	<0.012	<0.012	<0.011	<0.011		NA	N.	
Methyl Ethyl	0						<0.110		11.0>			<0.240		<2.4	<0.11	<0.11	<2.4			<0.056			<0.055			40005					<0.051	<0.110			<0.059		<0.057			11.62	146.24	
Methylene chloride				T	T		<0.027				<0.65	<0.120	Ī	<0.62			<0.62			<0.0028	00						170.02		8								<0.029	0.033 <0.057		0.0255(2)	10 0(2)	
p-Isopropyl-toluene			1	T				<0.0051	0.71		<0.13	8	<0.0054	0.14	<0.0056	<0.0057	<0.12			<0.0056		<0.0055	<0.0055	<0.0054		40,0004	T	Т			<0.0051	<0.0055	<0.0054	<0.0054	<0.0059	<0.0059	<0.0057	<0.0057		441(2)	1,000(2)	
ouszusqidoidosj		T	T	T				-0.0051	0.52	9.05	<0.13	0,23	<0.0054	<0.12	-0,0056	<0.0057	<0.12			<0.0056			<0.0055			<0.0054		Т			<0.0051	<0.0055	<0.0054		<0.0059	0	<0.0057	<0.0057		185(2)	1850	
эшицэшорој			Т	T	<0.01	<0.011	<0.011	010'0>	<0.011	<1.2	<0.26	<0.048	<0.011	<0.24	<0.011	<0.011	<0.24	<0.011	<0.012	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	11000	<0.011	1100	<0.011	<0.010	<0.010	<0.011	<0.011	<0.011	<0.012	<0.012	<0.011	<0.011		NA	NA	
Hexachloro- butadiene		<0.000	-0.0053	200000	<0.0056	<0.0054	<0.0053	<0.0051	<0.0054	9:0>	<0.13	<0.024	<0.0054	<0.12	<0.0056	<0.0057	<0.12	<0.0057	<0.0058	<0.0056	<0.0056	<0.0055	<0.0055	<0.0054	<0.0055	<0.0054	<0.0004	20,000	<0.0005	<0.0051	<0.0051	<0.0055	<0.0054	<0.0054	<0.0059	<0.0059	<0.0057	<0.0057		6.777	31.18	
9H-7	20063	150.02	-0.083	20000	<0.056	<0.054	<0.053	<0.051	<0.054	0.6>	<1.3	<0.240	<0.054	<1.2	<0.056	<0.057	<1.2	<0.057	<0.058	<0.056	<0.056	<0.055	<0.055	<0.054	<0.055	40.054	40,054	2000	950.0>	<0.051	<0.051	<0.055	<0.054	<0.054	<0.059	<0.059	<0.057	<0.057		NA	NA	
Lab Sample No.	901848	201854	901847	140167	291850	291852	291854	292260	292408	292409	292410	292576	292577	292403	292405	292407	292412	292570	292572	292574	292575	290203	290204	290693	290694	291218	291219	201720	291420	292249	292250	291421	292251	292256	290205	290207	290209	290210				700
Depth Sampled (feet)	8	9	9	0	4	9	4	+	6	6	9	7	9	1	4	*	7	4.5	3	5	5	6.5	6.5	9	9	6-7	1-9	0	4	4	4	4	+	4.5	4.5	3.5	4	4			Colf(I)	tial Cleanup G
Date Sampled	1000/1/5	5/1/2001	5/1/2001	2/11/2001	5/1/2001	5/1/2001	5/1/2001	5/4/2001	5/9/2001	5/9/2001	5/9/2001	5/10/2001	5/10/2001	5/9/2001	5/9/2001	5/9/2001	5/9/2001	5/10/2001	5/10/2001	5/10/2001	5/10/2001	4/10/2001	4/10/2001	4/18/2001	4/18/2001	4/23/2001	4/23/2001	4/23/2001	4/25/2001	5/4/2001	5/4/2001	4/25/2001	5/4/2001	5/4/2001	4/10/2001	4/10/2001	4/10/2001	4/10/2001		s Subsurface Soil	Soule Subsurface 8	exceeds the VRP Tier II Non-Residential Cleanup Goal
Samule No.		Al Floor 2	A.1 Sidowall I Substrafform	At sidewall I subsuffice	Al Sidewall 2 Subsurface	Al Sidewall 3 Subsurface	Al Sidewall 4 Subsurface	Al Sidewall 5 Subsurface	A2 Floor 1	A2 Floor 1 Dup.	A2 Floor 2	A2 Floor 3	A2 Floor 4	A2 Sidewall 1 Subsurface	A2 Sidewall 2 Subsurface	A2 Sidewall 3 Subsurface	A2 Sidewall 4 Subsurface	A2 Sidewall 5 Subsurface	A2 Sidewall 6 Subsurface	A2 Sidewall 7 Subsurface	Dup.	A3 Floor 1	A3 Floor 2	A3 Floor 3	A3 Floor 4	A3 Floor 5	A3 Floor 5 Dup.	A3 Floor 0	A3 Floor 8	A3 Floor 8	A3 Floor 8 Dup.	A3 Floor 9	A3 Floor 9	A3 Floor 10	A3 Sidewall 1 Subsurface	A3 Sidewall 2 Subsurface	A3 Sidewall 3 Subsurface	A3 Sidewall 3 Subsurface Dup.		Tier II Residential Cleanup Goals Subsurface Soil	Time II Now, Desidential Cleanum Goals Subsurface Soil(1)	elected compound exceeds the VRI

Table 13a

Transition Subsurface Sola Analytical Results for VOCs (mg/kg)

Former General Motors Corporation

Allicon Gas Turbine Division, Plant 10

Indianapolis, Indiana

IDEM VRP #6991004

KERAMIDA Project No. 2829E

229,642

NA

0.044 0.21

8.01

7.24

410,00000 NA

972(2)

10,000

NA NA

146.24

10.9(7)

68,147 407.48

11.62

surface Soil - VOCs Page 6 of 8 1,000 1,405.37 Table 13a - Excavation Confirm NA 1,000

1,000 4410 1857 NA NA 31.18 NA NA

Indiana Department of Environmental Management Voluntury Remediation Programs Reseauce Colleck, Appendig T. Fart II Cleanup Goals-shuman Healt Evaluation by Office of Environmental Response, July 1996.

Calculates using surrogate toxicity values and Ther II equations.

ource: EPA Region 3 Risk-Based Cono

Table 13a
frantion Subsurface Soil Analytical Results for VOCs (mg/kg)
Former General Motors Corporation
Allison Gas Turbine Division, Plant 10
Indiamapolis, Indiama
IDEM VRP #6991094
KERAMIDA Project No. 2829E

7,1,1,2 Trichloroethane

S Trichloroethane

-oroldoh T-4, £, 1 8

S 1,2,3-Trichloro-

-oroldserts-L.2,1,1,1

oroidsarteT-1,1,1,2-Tetrachloro-

San-Propyl-benzene

MIBE)

4-Methyl-2-

Ketone Methyl Ethyl

CO. 0052 CO. 0052 CO. 0052 CO. 0052

0.0052 Dutadiene

A5 Floor 1 A5 Floor 2

Methylene chloride

ther (MTBE)

Reference 36 Page 230

Xylenes, Total	<0.016	20.015	50,015	<0.016	<0.017	<0.016	<0.016	<0.0051		%.I>	<0.38	7	0.915	0.0	<0.017	<0.017	<0.37	<0.0057	<0.0058	<0.0056	20.0056	<0.0055	<0.0055	<0.0054	<0.0055	<0.0054	<0.0054	<0.0055	<0.0056	<0.017	<0.0051	<0.0051	<0.017	<0.0054	<0.0054	<0.0059	96.0	<0.0057	<0.0057		1,000	
Vinyl chloride	<0.011	010.00	SOLUTO.	<0.011	<0.011	<0.011	<0.011	<0.010	<0.011	<1.2	<0.26	<0.048	<0.011	<0.24	<0.011	<0.011	<0.24	<0.011	<0.012	<0.011	11000	-0.011	<0.011	<0.011	<0.011	<0.011	40.01F	<0.011	<0.011	<0.011	<0.010	<0.010	<0.011	<0.011	<0.011	<0.0012	<0.012	<0.011	<0.011		0.129	
Vinyl acetate	150.05	-0.061	<0.00	<0.053	<0.056	<0.054	<0.053	010.0>	<0.054	0'9>	<13	<0.048	<0.011	<1.2	<0.056	<0.057	<1.2	110'0>	<0.012	110'0>	100	1002	10.0>	<0.011	<0.011	<0.01	<0.011	<0.011	<0.011	950.0>	<0.010	<0.010	<0.055	<0.011	110.0>	<0.0012	<0.012	110:0>	110.0>		NA	
1,3,5-Trimethyl- onsxnəd		-0.000	760.05	<0.0053	<0.0056	<0.0054	<0.0053	<0.0051	1.2	9′0>	<0.13	2	<0.0054	0.39	<0.0056	<0.0057	<0.12	<0.0057	<0.0058	<0.0056	9500.00	<0.0065	<0.0055	<0.0054	<0.0055	<0.0054	<0.0054	<0.0055	<0.0056	<0.0056	<0.0051	<0.0051	<0.0055	<0.0054	<0.0054	<0.0059	<0.0059	<0.0057	<0.0057	6	1.74	
1,2,4-Trimethyl-	<0.0051	0.000	50.09£	<0.0053	<0.0056	<0.0054	<0.0053	<0.0051	4.2	1.2	<0.13	4.9	<0.0054	1.7	<0.0056	<0.0057	<0.12	<0.0057	<0.0058	<0.0056	95000	-0 0055	<0.0055	<0.0054	<0.0055	<0.0054	<0.0054	<0.0055	<0.0056	<0.0056	<0.0051	<0.0051	0.014	<0.0054	<0.0054	<0.0059	<0.0059	<0.0057	<0.0057		1.59~	
-oroldoirT-£,2,1 anaqorq	<0.0063	-0.0061	<0.000	<0.0053	<0.0056	<0.0054	<0.0053	<0.0051	<0.0054	9:0>	<0.13	<0.024	<0.0054	<0.12	<0.0056	<0.0057	<0.12	<0.0057	<0.0058	<0.0056	95000	<0.00055	<0.0055	<0.0054	<0.0055	<0.0054	<0.0054	<0.0055	<0.0056	<0.0056	<0.0051	<0.0051	<0.0055	<0.0054	<0.0054	<0.0059	<0.00059	<0.0057	<0.0057		NA	
Trichloro-fluoro		100000	<0.0001 50.0001	<0.0053	<0.0056	<0.0054	<0.0053	<0.0051	<0.0054	<0.6	<0.13	<0.024	<0.0054	<0.12	<0.0056	<0.0057	<0.12	<0.0057	<0.0058	<0.0056	950000	<0.0055	<0.0055	<0.0054	<0.0055	<0.0054	<0.0054	<0.0055	<0.0056	<0.0056	<0.0051	<0.0051	<0.0055	<0.0054	<0.0054	<0.0059	<0.0059	<0.0057	<0.0057	-	281	
Trichloroethene	0.0070	7.6	1.0	<0.0053	0.16	0.0051	0.045	<0.0051	10	2.8	300	<0.024	0.011	22	0,0079	0.044	7.18	0.200	0,007	0.116	0.10	1100	<0.0055	<0.0054	0.11	0.017	0.055	0.01	<0.0056	1:00	<0.0051	<0.0051	0.011	62	<0.0054	<0.0059	<0.0059	<0.0057	<0.0057		0.076	
Lab Sample No.	291848	20100	291633	291847	291850	291852	291854	292260	292408	292409	292410	292576	292577	292403	292405	292407	292412	292570	292572	292574	202675	200003	290204	290693	290694	291218	291219	291220	291221	291420	292249	292250	291421	292251	292256	290205	290207	290209	290210			
Depth Sampled (feet)	8	3	0	9	4	9	4	4	6	6	9	7	9	7	4	4	7	4.5	3	5	,	88	6.5	9	9	6-3	6-7	9	9	4	4	4	4	4	4.5	4.5	3.5	4	4			
Date Sampled	1000/1/5	6/16/00/11	3/1/2001	5/1/2001	5/1/2001	5/1/2001	5/1/2001	5/4/2001	5/9/2001	5/9/2001	5/9/2001	5/10/2001	5/10/2001	5/9/2001	5/9/2001	5/9/2001	5/9/2001	5/10/2001	5/10/2001	5/10/2001	100000175	4/10/2001	4/10/2001	4/18/2001	4/18/2001	4/23/2001	4/23/2001	4/23/2001	4/23/2001	4/25/2001	5/4/2001	5/4/2001	4/25/2001	5/4/2001	5/4/2001	4/10/2001	4/10/2001	4/10/2001	4/10/2001		Is Subsurface Soil	
Sample No.	A Hoor 1	A L Floor 2	AL FIDOR 2	A1 Sidewall I Subsurface	A1 Sidewall 2 Subsurface	A1 Sidewall 3 Subsurface	A1 Sidewall 4 Subsurface	A1 Sidewall 5 Subsurface	A2 Floor 1	A2 Floor 1 Dup.	A2 Floor 2	A2 Floor 3	A2 Floor 4	A2 Sidewall 1 Subsurface	A2 Sidewall 2 Subsurface	A2 Sidewall 3 Subsurface	A2 Sidewall 4 Subsurface	A2 Sidewall 5 Subsurface	A2 Sidewall 6 Subsurface	A2 Sidewall 7 Subsurface	A2 Sidewall 7 Subsurface Dun	A1 Floor 1	A3 Floor 2	A3 Floor 3	A3 Floor 4	A3 Floor 5	A3 Floor 5 Dap.	A3 Floor 6	A3 Floor 7	A3 Floor 8	A3 Floor 8	A3 Floor 8 Dap.	A3 Floor 9	A3 Floor 9	A3 Floor 10	A3 Sidewall I Subsurface	A3 Sidewall 2 Subsurface	A3 Sidewall 3 Subsurface	A3 Sidewall 3 Subsarface Dup.		Tier II Residential Cleanup Goals Subsurface Soil	The second secon

Reference 36 Page 231

Xylenes, Total	<0.0053	<0.018	<0.017	0.0053	20,000	<0.0052	<0.025		<0.025	<0.0052	<0.0051	<0.0054	<0.0053	<0.0055	<0.0054	<0.200		<0.200	<0.0054	<0.0054	<0.017	<0.016	<0.016	<0.017	<0.016	<0.017	>0.016	<0.016	<0.223	<0.220	<0.220	<0.24	1,000	1,000
Vinyl chloride	110.011	<0.012	<0.011	01000	SV.O.O	<0.010	<0.049	-	<0.049	<0.010	<0.010	<0.011	<0.011	<0.011	<0.011	<0.410		<0.400	<0.011	<0.011	<0.011	-0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.435	<0.440	<0.878	<0.443	0.129	0.13
Vinyl acetate	<0.011	<0.059	950 02	00000	SU.ULU	<0.010	<0.049		<0.049	<0.010	010:0>	110.0>	<0.011	<0.011	<0.011	<0.410		<0.400	<0.011	<0.011	<0.055	<0.055	<0.0053	<0.055	<0.054	<0.056	<0.054	<0.054	<0.435	<0.440	878.0>	<0.443	N.	V.
-lydismirT-2,5,1 snaxnad	<0.0053	<0.0059	9500.0>	0.00000	500,005	<0.0052	<0.025		<0.025	<0.0052	<0.0051	<0.0054	<0.0053	0.10	<0.0054	<0.200		<0.200	<0.0054	<0.0054	<0.0056	<0.0055	<0.0053	<0.0055	<0.0054	<0.0056	<0.110	<0.0054	<0.223	<0.220	<0.439	1.5	1.74(2)	124(2)
1,2,4-Trimethyl- ensene	<0.0053	<0.0059	9500.02	0.00000	<0.0032	<0.0052	<0.025		<0.025	<0.0052	<0.0051	<0.0054	<0.0053	0.10	<0.0054	<0.200		<0.200	<0.0054	<0.0054	<0.0056	<0.0055	<0.0053	<0.0055	<0.0054	<0.0056	<0.110	<0.0054	<0.223	<0.220	<0.439	4.4	1.592	306 ⁽²⁾
1,2,3-Trichloro- propane		<0.0059	950000	200000	<0.0002	<0.0052	<0.025	1000	<0.025	<0,0052	<0.0051	<0,0054	<0.0053	<0.0055	<0.0054	<0.200		<0.200	<0.0054	<0.0054	<0.0056	<0.0055	<0.0053	<0.0055	<0.0054	<0.0056	<0.110	<0.0054	<0.223	<0.220	<0.439	<0.228	NA	NA
Trichloro-fluoro- methane	<0.0053	<0.0059	950000	000000	<0.0002 <0.0002	<0.0052	<0.025	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<0.025	<0.0052	<0.0051	<0.0054	<0.0053	<0.0055	<0,0054	<0.200		<0.200	<0.0054	<0.0054	<0.0056	<0.0055	<0.0053	<0.0055	<0.0054	<0.0056	<0.0054	<0.0054	<0.223	<0.220	<0.439	<0.228	281(2)	1,000 ⁽²⁾
Trichloroethene	<0.0053	6.143	950000	SU-UNDO	N.A.	<0.0052	8.2		3.7	0.0980	0.0053	0,063	0.00%	0.13	0.02	38		577	1.5	1,6	<0.0055	<0.0055	<0.0053	<0.0055	<0.0054	0.049	3.6	<0.0054	10.0	4.8.8	132	<0.228	9700	25.73
Lab Sample No.	201317	291423	30110C	2030000	292738	292264	292266		292267	292255	292254	292248	292253	292261	292262	292241		292242	292244	292246	291428	291429	291430	291427	291431	291433	291862	291860	290212	290215	290213	290216		
Depth Sampled (feet)	4	25	3	0 3 0	2.3-3	3	3.5	100	3.5	4	4	3	3	.5	101	4		4	4	3.5	4	4	3	2.5	3	3	2	3.5	5	2	3	3	0	Soil
Date Sampled	4723/2001	4/25/2001	100c/sc/F	- CANDON	2/4/2001	5/4/2001	5/4/2001		5/4/2001	5/4/2001	5/4/2001	5/4/2001	5/4/2001	5/4/2001	5/4/2001	5/4/2001		5/4/2001	5/4/2001	5/4/2001	4/25/2001	4/25/2001	4/25/2001	4/25/2001	4/25/2001	4/25/2001	5/1/2001	5/1/2001	4/10/2001	4/10/2001	4/10/2001	4/10/2001	Is Subsurface Soil	Goals Subsurface
Sample No.	A3 Sidewall 4 Subsurface	A3 Sidewall 6 Subsurface	A.2 Cidencell 7 Enhancing	AS SIGNABLY SUSSIFIACE	A 5 Sidewall 8 Subsurface	A3 Sidewall 9 Subsurface	A3 Sidewall 10 Subsurface	A3 Sidewall 10 Subsurface	Dup.	A4 Floor 1	A4 Floor 2	A4 Sidewall 1 Subsurface	A4 Sidewall 2 Subsurface	A5 Floor 1	A5 Floor 2	A5 Sidewall 1 Subsurface	A5 Sidewall I Subsurface	Dup.	A5 Sidewall 2 Subsurface	A5 Sidewall 3 Subsurface	A6 Floor 1	A6 Floor I Dup	A6 Floor 2	A6 Sidewall 1 Subsurface	A6 Sidewall 2 Subsurface	A6 Sidewall 3 Subsurface	A7 Floor 2	A7 Sidewall 2 Subsurface	A8 Floor 1	A8 Floor 2	A8 Sidewall I Subsurface	AE Sidewall 2 Subsurface	Ter II Residential Cleanup Goals Subsurface Soil ⁽¹⁾	Fier II Non-Residential Cleanup Goals Subsurface Soil(1)

Page 232

Page 1 of 2

Page 1 of 2

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	Sample No.	Date Sampled	Depth Sampled (feet)	Lab Sample No.	Усепарhthепе	Acenaphthylene	Anthracene	Вепхо (а) ангргасепе	bàt.eue Reuzo (a)	Benzo (b)	Benzo (ghi)	Benzo (k)	Chrysene	Dibenzo (a,h) anthracene	Fluoranthene	Fluorene	Indeno (1,2,3- cd) pyrene	onolethidge/V	Phenanthrene	Pyrene
Marie Mari	Al Floor 1	5/1/2001	80	291848	<0.35	<0.35	<0.35							<0.35					100	<0.35
Markey 1970 1	Al Floor 2	5/1/2001	9	291855	<0.34	<0.34	<0.34		<0.34					<0.34					***	<0.34
Markey System 4 System Gales	A1 Sidewall 1 Subsurface	5/1/2001	9	291847	<0.35	<0,35	<0.35	<0.35	0.37	<0.35	0.42	c0.35	<0.35	<0.35	<0.35		<0.35			<0.35
Value Valu	A1 Sidewall 2 Subsurface	5/1/2001	4	291850	<0.37	<0.37	<0.37		<0,37	<0.37	<0.37	c0,37	<0.37	<0.37	<0.37		<0.37			<0.37
Particle Particle	A1 Sidewall 3 Subsurface	5/1/2001	9	291852	<0.36	<0.36	<0.36		<0.36			c0.36	<0.36	<0.36	<0.36		<0.36			<0.36
This column Colum	A1 Sidewall 4 Subsurface	5/1/2001	4	291854	<0.35	<0.35	<0.35		<0.35			c0.35	<0.35	<0.35	<0.35		<0.35			<0.35
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	A1 Sidewall 5 Subsurface	5/4/2001	4	292260	<0.34	<0.34	<0.34		<0.34			c0,34	<0.34	<0.34	<0.34		<0.34			<0.34
Part	A2 Floor 1	5/9/2001	6	292408	<0.36	<0.36	<0.36		<0.36				<0.36	<0.36	<0.36		<0.36	0.51		<0.36
Systylin 6	A2 Floor I Dup.	5/9/2001	6	292409	<0.35	<0.35	<0.36		<0,36				<0.36	<0.36	<0.36		<0.36	0.37		<0.36
SINTON 6 739275 6135 6135 6135 6136	A2 Floor 2	5/9/2001	9	292410	<0.36	<0.36	<0.36		<0.36			c0.36	<0.36	<0.36	<0.36	-1	<0,36			<0.36
with the standard of a standard of	A2 Floor 3	5/10/2001	7	292576	<0.36	<0.36	<0.36					c0.36	<0.36	<0.36	<0.36		<0.36	0.54		<0.36
This contributes 55,90,001 4 22,24.03 6.1.37 <	A2 Floor 4	5/10/2001	9	292577	<0.36	<0.36	<0.36					c0.36	<0.36	<0.36	<0.36		<0.36			<0.36
with three 59/2010 4 202406 6.137	A2 Sidewall 1 Subsurface	5/9/2001	7	292403	<0.37	<0.37	<0.37					c0.37	<0.37	<0.37	<0.37		<0.37			<0.37
Markey Systocial 4 2924412 6134 61	A2 Sidewall 2 Subsurface	5/9/2001	4	292405	<0.37	<0.37	<0.37					c0.37	<0.37	<0.37	<0.37		<0.37			<0.37
nuffice	A2 Sidewall 3 Subsurface	5/9/2001	4	292407	<0.38	<0.38	<0.38		<0.38	0			<0.38	<0.38	<0.38		<0.38	9		<0.38
minrice 51012001 4.3 20.38 class	A2 Sidewall 4 Subsurface	5/9/2001	7	292412	<0.37	<0.37	<0.37		<0.37				<0.37	<0.37	<0.37		<0.37			<0.37
String S	A2 Sidewall 5 Subsurface	5/10/2001	4.5	292570	<0.38	<0.38	<0.38		<0.38				<0.38	<0.38	<0.38		<0.38			<0.38
Section Sect	A2 Sidewall 6 Subsurface	5/10/2001	.3	292572	<0.38	<0.38	<0.38		<0.38				<0.38	<0.38	<0.38		<0.38			<0.38
Third Day	A2 Sidewall 7 Subsurface	5/10/2001	5	292574	<0.37	<0.37	<0.37		<0.37				<0.37	<0.37	<0.37		<0.37			<0.37
4/10/2001 6.5 290/2014 6.135 6	A2 Sidewall 7 Subsurface Dup.	5/10/2001	5	292575	<0.37	<0.37	<0.37		<0.37				<0.37	<0.37	<0.37	Ĭ	<0.37			<0.37
	A3 Floor 1	4/10/2001	6.5	290203	<0.36	<0.36	<0.36		<0.36			c0.36	<0.36	<0.36	<0.36		<0.36			<0.36
H1822001 6	A3 Floor 2	4/10/2001	6.5	290204	<0.36	<0.36	<0.36		<0.36			96.05	<0.36	<0.36	<0.36	1	<0.36			d0.36
4/12/2011 6-7 29/12/8 61.35	A3 Floor 3	4/18/2001	9	290693	<0.36	<0.36	<0.36		<0.36			<0.36	<0.36	<0.36	<0.36	I	<0,36			<0.36
1,22,2001 6-7 291219 6-13 6	A3 Floor 4	4/18/2001	0	290694	<0.35	<0.35	<0.36		<0.56		T	d0.36	<0.36	<0.36	<0.36	T	<0.36			<0.30
Part Part	A3 Floor 5	4/24/2001	6-7	291218	<0.35	<0.36	<0.36		<0.36		T	c0.36	<0.36	<0.36	<0.36	T	<0.36			<0.36
4722001 6 29121 6.437	A3 Floor 5 Dup.	4/23/2001	6-7	291219	<0.36	<0.36	<0.36		<0.36				<0.36	<0.36	<0.36	T	<0.36			<0.36
	A3 Floor 6	4/23/2001	9	291220	<0.37	<0.37	<0.37		<0.37				<0.37	<0.37	40.37	T	<0.37			<0.37
4,102,2001 4 291,242 0.434 0.	A3 Floor 7	4/23/2001	9	291221	<0.37	<0.37	<0.37		<0.37		T		40.37	<0.37	<0.37		40,37			(0.37
3.442001	A3 Floor 8	4/25/2001	4	291420	<0.37	<0.37	<0.37		(0.37		T	d).37	40.57	<0.37	<0.37	I	40.37			<0.37
1,25/2001 4 221/210 4	AS Floor 8	5/4/2001	7	292249	40.34	50.34	<0.34	T	<0.34		T	CU.34	CU.34	<0.34	CU.34	T	<0.34 0.34			<0.34
SALZION 4	A3 Floor 8 Dup.	1005/2001	+ +	107777	40.34	50.34 50.34	<0.34		50.34 50.26		T	00.24	CU.34	40.34 40.36	-0.24 -0.26	I	-0.34 -0.36			-0.34 -0.36
SIGNATOR 4.5 292256 4.356 4.	A3 Floor 9	5/4/2/001	+ 4	202051	-0.35 -0.35	20.30	50.30 -0.36	T	20.30	T	T	T	0.36	0.00	26.00	T	0.30			-0.36
surface 4/10/2001 4.5 290/206 4.0.39 4.0.38 4.0.38 4.0.38 4.0.38 4.0.38 4.0.38 4.0.38 4.0.38 4.0.38 4.0.3	A3 Floor 10	5/4/2001	4.5	292256	98.02	20.36	20.36		20.30		T		92 02	95.0>	98 02	T	40.36	I		50.36
Surface 4/10/2001 3.5 290/207 4G.39 (G.39	A3 Sidewall 1 Subsurface	4/10/2001	4.5	200000	-0 30 -0 30	ZO 30	-0.30	T	02.02	I	T	T	-0.30	<0.30	<0.30	T	-O 30	I		-0.30
surface 4/10/2001 4 290/209 cd.38 cd	A3 Sidewall 2 Subsurface	4/10/2001	3.5	200002	70.30	-0.30	-0.30		02.0		T		-0.30	OF 0>	-0.30		-0.30			-0.39
face Du. 4/10/2001 4 290210 4/23 6/38	A3 Sidewall 3 Subsurface	4/10/2001	40	290200	<0.3R	<0.38	<0.38		<0.38		T	-0.38	<0.38	<0.38	<0.38		<0.38			<0.38
surface 4/23/2001 4 29/217 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35	A3 Sidewall 3 Substriface Dun	4/10/2001	4	290210	<0.38	<0.38	<0.38		<0.38		-0.38	0.38	<0.38	<0.38	<0.38		<0.38	<0.38		<0.38
nup Goals Subsurface Soil ⁽¹⁾ 10,000 1,280 ⁽²⁾ 10,000 1,280 ⁽²⁾ 10,000 10,388 69,85 354,98 8,760 ⁽²⁾ 3,759,12 10,000 69.86 1,280 ⁽²⁾ 10,000 260 ⁽³⁾	A3 Sidewall 4 Substruface	4723/2001	4	201217	40.35	20.35	20 35		-0.35		T	-0.35	c0 35	<0 35	<0.35	<0.35	Z035	<0.35		<0.35
nup Goals Subsurface Soil ⁽¹⁾ 10,000 1,280 ⁽²⁾ 10,000 1,280 ⁽²⁾ 10,000 1,280 ⁽²⁾ 3,54,98 3,54,98 8,760 ⁽²⁾ 3,759,12 10,000 69.86 10,000 10,000 1,280 ⁽²⁾ 10,000 10,000 69.85 3,54,98 8,760 ⁽²⁾ 3,759,12 10,000 69.86 10,000 69.87 10,000 69.86 10,000 69.87 10,000 69.86 10,000 69.87 10,000 69.86 10,000 69.87 10,000 69.86 10,000 69.87 10,000 69.87 10,000 69.86 10,000 69.87 10,000 69.86 10,000 69.87 10,000 69.86 10,000 69.87 10,000 69.87 10,000 69.87 10,000 69.87 10,000 69.87 10,000 69.87 10,000 69.87 10,000 69.87 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10	AND THE PERSON OF THE PERSON O				-		2000													
10,000 1,280 ²² 10,000 1,0380 ²² 354.98 8,760 ²³ 3,759,12 10,000 69.86 10,000 629.17 10,000 260 ²³ 9,500 9,500 10,000	Ser II Residential Cleanup Goals St	ubsurface Soil ⁽¹⁾			10,000	0.425(2)	10,000	103.881	69.849	354.977	6,330 ⁽²⁾	501.638	379.273	69.863	2,305.040	8,838,641	629.166	1,761.785	260(3)	10,000
Cleanup Goals Subsurface Soil ⁽¹⁾ Start Start Start Start Start Subsurface Soil ⁽¹⁾ Start St																				
Network of the State of the State of the State of the State of the State of	Ter II Non-Residential Cleanup Go	als Subsurface Soil	(0)		10,000	1,280(2)	10,000	103.88	69.85	354.98	8,760 ⁽²⁾	3,759.12	10,000	98'69	10,000	10,000	629.17	10,000	260 ⁽²⁾	10,000
avide VRP	efected compound exceeds the VRP T	er II Non-Readential	Cleanup Goal																	
e last rasie for footnoies.		or II Residential Clar	nun God																	
AND MAIN THE TOTAL PARTY AND THE TOTAL PARTY A	ce last page for footnotes.																			

Table 13b

Former Centeral Motors Corporation

Former Centeral Motors Corporation

Alison Gas Turbine Division, Plant 10

Indiamapolis, Indiana

IDEM VRP #6991004

KERAMIDA Project No. 2829E

Table 13b - Excavation Confirmation Subsurface Soil - PAHs Page 2 of 2

Reference 36

Indiana Department of Environmental Management Voluntury Remedi Program Resource Guide. Appendix F Tier II Clearup Godle-Human Health Evaluation by Office of EnvironmentalResponse, July 1996.

NA = Not Applicable

Samples analyzed using EPA SW-846 Method 8310

Table 13b
Infirmation Subsurface Soil Analytical Results for PAHs (mg/kg)
Former General Motors Corporation
Allison Gas Turbine Division, Plant 10
Indiamopolis, Indiama
IDEM VRP #6991004
KERAMIDA Project No. 2829E

(2) IDEM VRP Interoffice Memo dated on January 26, 1998.

Samples analyzed using EPA Method Series 6000/7000 mg/kg = milligrams per kilogram

(ii) Indiana Department of Environmental Management Voluntary Remediation Program Resource Guide,
(iii) Properdix F Tier II Cleanup Goals-Human Health Evaluation by Office of Environmental Response, July 1996.

Appendix F Tier II Cleanup Goals-Human Health Evaluation by Office of Environmental Response, July 1996.

(Z) 000°I	7,300	730		I ₍₁₎	Subsurface Soi	r II Non-Residential Cleanup Goals seted compound exceeds the VRP Tier
(2) 000	005,7	087			urface Soil ⁽¹⁾	r II Residential Cleanup Goals Subs
					Languagu	
	L.T.	09.0>	517067	3	1007/01/7	As Sidewall 2 Subsurface
	T'L	\$8.0>	290213	3	4/10/2001	As Sidewall I Subsurface
	7°F	88.0	290212	S	4/10/2001	1 100FI 8A
	68	\$\$'0>	291820	2.5	1002/1/5	A7 Sidewall 2 Subsurface
	75	+5'0>	798167	S	1007/1/5	A7 Floor 2
	t'S	9.2>	291433	8	1002/52/4	A6 Sidewall 3 Subsurface
	5.8	1/5,0>	291431	3	1/25/2001	A6 Sidewall 2 Subsurface
	5'9	88.0>	291427	2.5	4/25/2001	A6 Sidewall I Subsurface
	9.6	£2.0>	291430	3	1007/57/70	A6 Floor 2
	6°F	88.0>	291429	t	4/25/2001	A6 Floor 1 Dup.
	rs	\$5.0>	291428	t	1/26/2001	I 100FI 0A
	91	42.0>	292246	3.5	2/4/5001	AS Sidewall 3 Subsurface
	£.	45.0>	292244	† †	1007/4/5	A5 Sidewall 1 Subsurface Dup. A5 Sidewall 2 Subsurface
	L'\$	£8.0> 48.0>	292242	t	1007/5/5	AS Sidewall I Subsurface
	2°t	45.05	292262	S	2/4/5001	S 100FL SA
	t1	\$2.0>	197767	S	2/4/5001	I 100FI 2A
	71	52.0>	292253	3	2/4/5001	A4 Sidewall 2 Subsurface
	8.8	42.0>	292248	3	2/4/2001	A4 Sidewall 1 Subsurface
	r's	69'0	292254	t	1007/4/5	A4 Floor 2
	71	9.€	292255	t	2/4/5001	I nooFI 4A
	97	1/2,0>	292267	3.5	1007/4/5	A3 Sidewall 10 Subsurface Dup.
5.4>		42.0>	595566	3.5	1007/5/5	A3 Sidewall 10 Subsurface
<4.2	71	75	595564	3	2/4/5001	Saldewall 9 Subsurface
	30	81	292258	2.5-3	2/4/2001 4/25/2001	A3 Sidewall 7 Subsurface A3 Sidewall 8 Subsurface
	1.6	65.0>	291423	5.5	1/25/2001	A3 Sidewall 6 Subsurface
2.4>		£8.0>	291217	Þ	1002/52/7	A3 Sidewall 4 Substuface
U P	41	TZ.0>	017067	t	1007/01/7	A3 Sidewall 3 Subsurface Dup.
	91	72.0>	590209	Þ	1007/01/5	A3 Sidewall 3 Subsurface
	81	89'0	290207	8.€	1002/01/\$	A3 Sidewall 2 Subsurface
	70	65.0>	290205	2.4	4/10/2001	A3 Sidewall I Subsurface
	8.4	42.0>	292256	57	1007/7/5	OI YOOFI EA
	6.5	48.0>	592251	t	1007/5/5	A3 Floor 9
	E'R	22.0>	791421 0077767	t t	2/4/2001	A3 Floor 8 Dup. Prooff EA
	L'L L'S	15.0>	292249	†	1002/7/5	A3 Floor 8
	0.6	95.0>	291420	ħ	1002/57/7	A3 Floor 8
	8.9	95.0>	291221	9	1007/53/7001	7 TOOFF EA
	71	\$5.0>	291220	9	4/23/2001	3 100FL EA
5.4>	8.5	45.0>	291219	L-9	1007/52/5	A3 Floor 5 Dup.
	8.7	46.0>	291218	L-9	1007/57/5	₹ 700FI ₹A
9	20	I'P	580067	9	1007/81/5	4 100F &A
	9'5	\$5.0>	\$6906Z	6.0	1002/81/5	A3 Floor 3 A Floor 3
	1'9 7'6	\$2.0> \$2.0>	290203	2.0	1002/01/7	1 100FL EA
	71	95.0>	292575	S	1005/01/5	A2 Sidewall 7 Subsurface Dup.
5.4>	9.5	92.0>	76767	S	1007/01/5	A2 Sidewall 7 Subsurface
III CATE	91	82.0>	292572	3	1007/01/5	A2 Sidewall 6 Subsurface
	II	72.0>	292570	5.4	1007/01/5	A2 Sidewall 5 Subsurface
	67	95.0>	292412	L	1007/6/9	A2 Sidewall 4 Subsurface
7	41	2.4	292407	t	1007/6/\$	A2 Sidewall 3 Subsurface
	F-6	95,0>	592405	- t	1007/6/\$	AZ Sidewall 2 Subsurface
4.4>		95.0>	292403	L	1007/6/\$	A2 Sidewall I Subsurface
	1'9	\$2.0>	292577 292577	9	1007/01/5	A2 Floor 3 A2 Floor 4
	L'8	\$2.0>	292410	9	1005/01/5	A2 Floor 2
4.4>	5.2	\$8.0>	292409	6	1007/6/5	A2 Floor 1 Dup.
)	7.4	\$2.0>	292408	6	1007/6/9	A2 Floor 1
[.4>	5.9	15.0>	595560	t	1007/7/5	A1 Sidewall 5 Subsurface
	5'9	52.0>	591824	t	1007/1/9	A1 Sidewall 4 Subsurface
I	1'8	FI	791852	9	1007/1/\$	A1 Sidewall 3 Subsurface
ç	81	6.0	291850	, t	1007/1/5	A1 Sidewall 2 Subsurface
E	SI	21	748162	9	1007/1/9	Al Sidewall I Subsurface
4,1	30	L'1	291822	9	1007/1/9	A Floor 2
	30	£8.0>	291848	8	1007/1/5	1 TooFI 1A
Total Lead	Chromium	Cadmium	Lab Sample No.	(1993)	Sampled	Sample No.

KERAMIDA Project No. 2829E Excavation Confirmation Subsurface Soil Analytical Results for Metals (mg/kg)

Allison Gas Turbine Division, Plant 10

Indianapolis, Indiana

IDEM VRP #6991004

KERAMIDA Project No. 2829E

Microcosm Study Results Former General Motors Corporation Allison Gas Turbine, Plant 10 Indianapolis, Indiana IDEM VRP #6991004 KERAMIDA Project #2829E

	Aqu	eous TCE (Concentratio	n by Day (ı	ıg/L)	Soil TCE Concentration by Day (mg/kg)	Aqueous TOC Concentration (mg/L)
Sample ID	0 .	7	14	21	28	28	@ 28 days
RV0 (0 ppm TOC)	670	540	550	440	410	16	1.2
RV1 (100 ppm TOC)	750	520	550	440	410	9.9	77
RV2 (300 ppm TOC)	830	550	600	480	440	9.3	260
RV3 (1000 ppm TOC)	950	260	450	380	390	. 11	1100

Table 15 "Hot Spot" Soil Analytical Results for VOCs (mg/kg) Former General Motors Corporation Allison Gas Turbine Division, Plant 10 Indianapolis, Indiana IDEM VRP #6991004 KERAMIDA Project No. 2829E

Sample No.	Date Sampled	Sample Depth (feet)	Lab Sample No.	Bromodichloromethane	n-Butylbenzene	sec-Butylbenzene	7 1	1,1-Dicmoroemylene cis-1,2- Dichloroethylene	trans-1,2.	1,1-Dichloropropene	Ethylbenzene	Isopropylbenzene	p-Isopropyttoluene	Methylene chloride	Naphthalene	n-Propylbenzene	1,1,1,2- Tetrachloroethane	Tetrachloroethylene	1,1,2-Trichloroethane	Trichloroethylene	All Other VOCs
HS-NW	8/28/2003	6	874031	< 0.042	< 0.042	1.66 <	0.042 <0.0	42 6	6.2 0.063	3 < 0.042	0.499	0.741		< 0.084	4.19		< 0.042		<0.042	7.87	ND
HS-EW	8/28/2003	6	874032	< 0.0050	< 0.0050	< 0.0050 < 0	0.0050 <0.0	050 0	268 <0.0050	< 0.0050	0.0088	0.0162	0.0286	<0.0100	0.0302		<0.0050		< 0.0050	0.742	
HS-SW	8/28/2003	6	874033	< 0.250	36.9	14.1 <	0.250 <0.2	50	67 0.26	1 < 0.250	2.54	4.21	16.8	< 0.500	12.8	11.8	<0.250	0.451	<0.250	56	ND
HS-WW	8/28/2003	6	874034	< 0.250	< 0.250	1.27 <	0.250 <0.2	50	116 0.28	8 < 0.250	0.365	0.484	1.4	< 0.500	3.13	1.31	<0.250	< 0.250	< 0.250	0.302	ND
						5 - St. 18-35		7 dise													
Tier Il Residentia	Cleanup Goals	Subsurface Soil ⁽¹⁾		0.000389 ⁽²⁾	33.5 ⁽²⁾	30.1(2)	0.025 0.	084 17.1	3.23 ⁽²⁾	0.00764(2)	834.372	185 ⁽²⁾	441 ⁽²⁾	$0.0255^{(2)}$	1,767.785	33.5 ⁽²⁾	0.076	0.227	0.035	0.076	NA
								3					162	\$ 0.50 60				77.4			ASTRONO NO
Tier II Non-Resid	ential Cleanup G	ioals Subsurface S	oil ⁽¹⁾	0.692(2)	972 ⁽²⁾	725 ⁽²⁾	0.37 0	08 102.4	9 193 ⁽²⁾	1.36(2)	1,000	185 ⁽²⁾	1,000(2)	10.9(2)	10,000	972 ⁽²⁾	7.24	8.01	1.05	25.73	NA

VOCs = Volatile Organic Compounds Samples analyzed using EPA SW-846 Method 8250b

mg/kg = milligrams per kilogram

ND = Not Detected

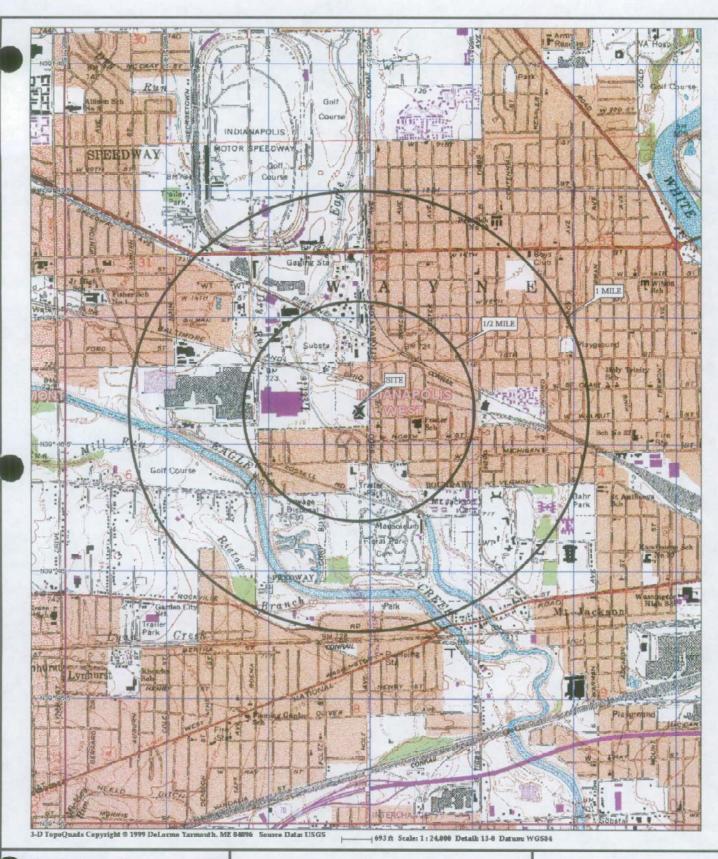
NA = Nct Applicable

(1) Indiana Department of Environmental Management Voluntary Remediation Program Resource Guide, Appendix F Tier II Cleanup Gcals-Human Health Evaluation by Office of Environmental Response, July 1996.

(2) Calculated using surrogate toxicity values and Tier II equations.

Table 16

"Hot Spot" Soil Analytical Results for Lead (mg/kg)
Former General Motors Corporation
Allison Gas Turbune Division, Plant 10
Indianapolis, Indiana
IDEM VRP #6991004
KERAMIDA Project No. 2829E


Sample No.	Date Sampled	Sample Depth (feet)	Lab Sample No.	Total Lead								
HS-NW	8/28/2003	6	874031	46.5								
HS-EW	8/28/2003	6	874032	100								
HS-SW	8/28/2003	6	874033	59.4								
HS-WW	8/28/2003	6	874034	11.4								
Tier II Residenti	ial Cleanup Goals S	ubsurface Soil (1)		400 ⁽³⁾								
Tier II Non-Resi	idential Cleanup Go	als Subsurface Soi	1 ⁽¹⁾	1,000 ⁽³⁾								
Common Backg	Common Background Ranges (2)											

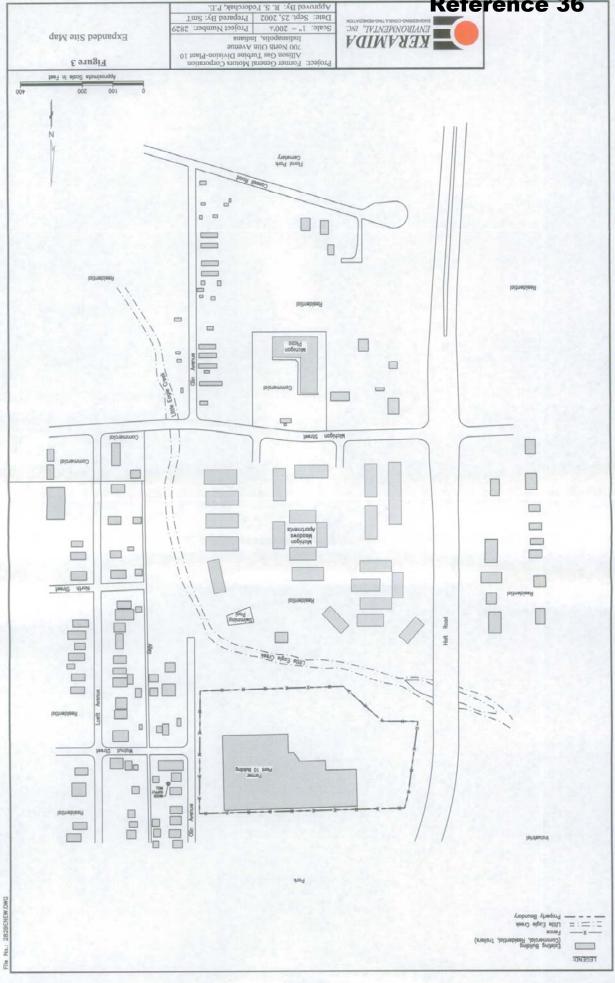
Samples analyzed using EPA Method Series 6010 mg/kg = milligrams per kilogram

⁽¹⁾ Indiana Department of Environmental Managemetholuntary Remediation Program Resource Guide, Appendix F Tier II Cleanup Goals-Human Health Evaluation by Office of Environmental Response, July 1996.

Source: James Dragun. The Soil Chemistry of Hazardous Materials Table 3.1 Native Soil Concentration of Various Elements: p.229, 1998.

⁽³⁾ IDEM VRP Interoffice Memo dated on January 26, 1996.

KERAMIDA Environmental, Inc. 30 North College Avenue Indianapolis, Indiana 46202


(317) 685-6600 FAX (317) 685-6610

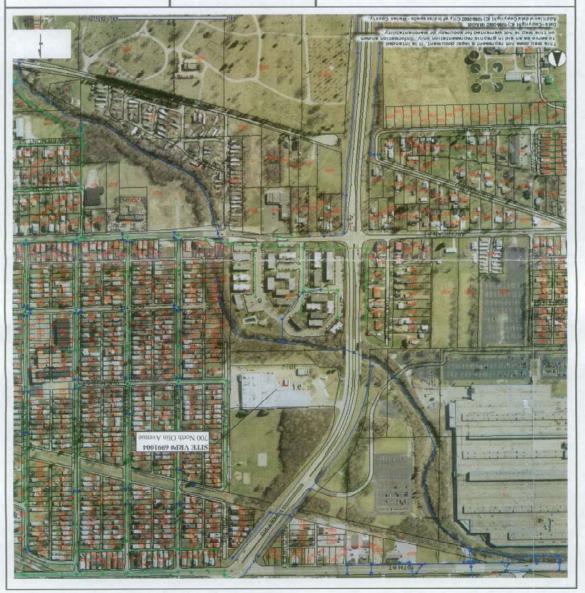
OE

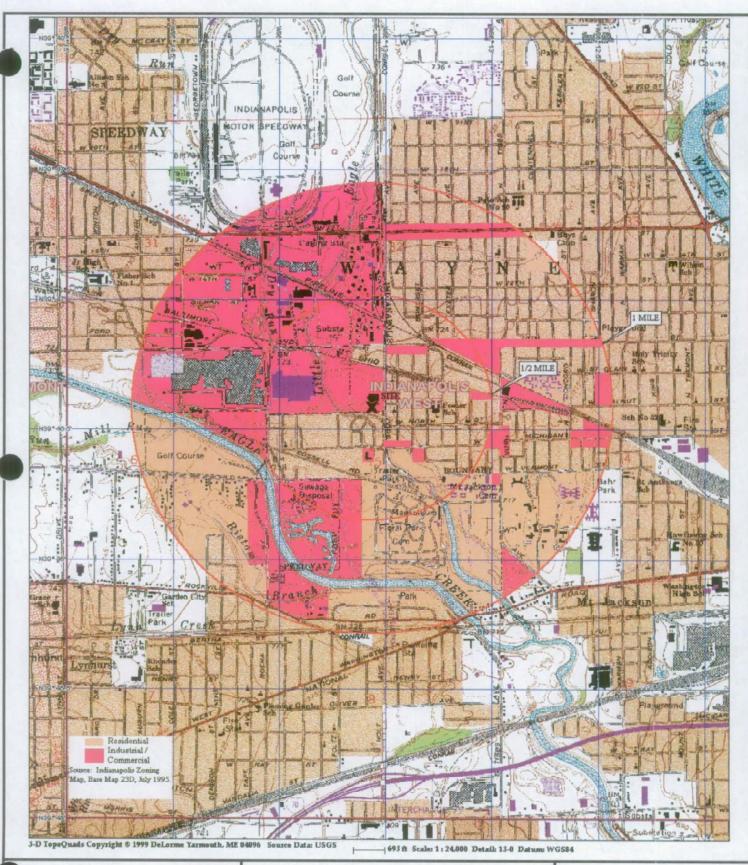
Figure 1
Site Location Map
Former General Motors Corporaion
Allison Gas Turbine Plant 10
700 North Olin Avenue
Indianapolis, IN

Prepared by : Becky Cassinelli Approved by : Kris Buckles Date : 9/29/2002

Date : 9/29/200
Project Number: 2829E

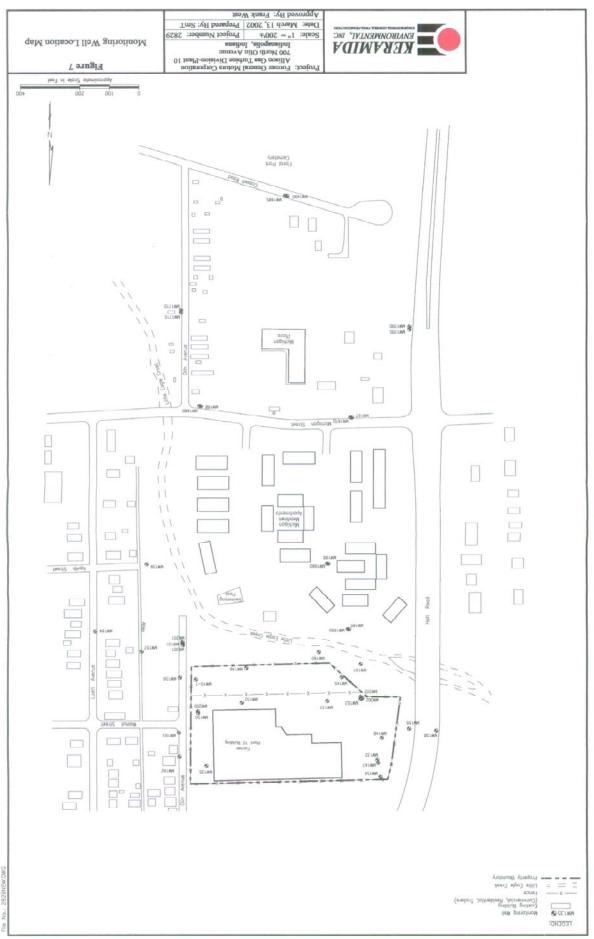
3829€ 10/28/03

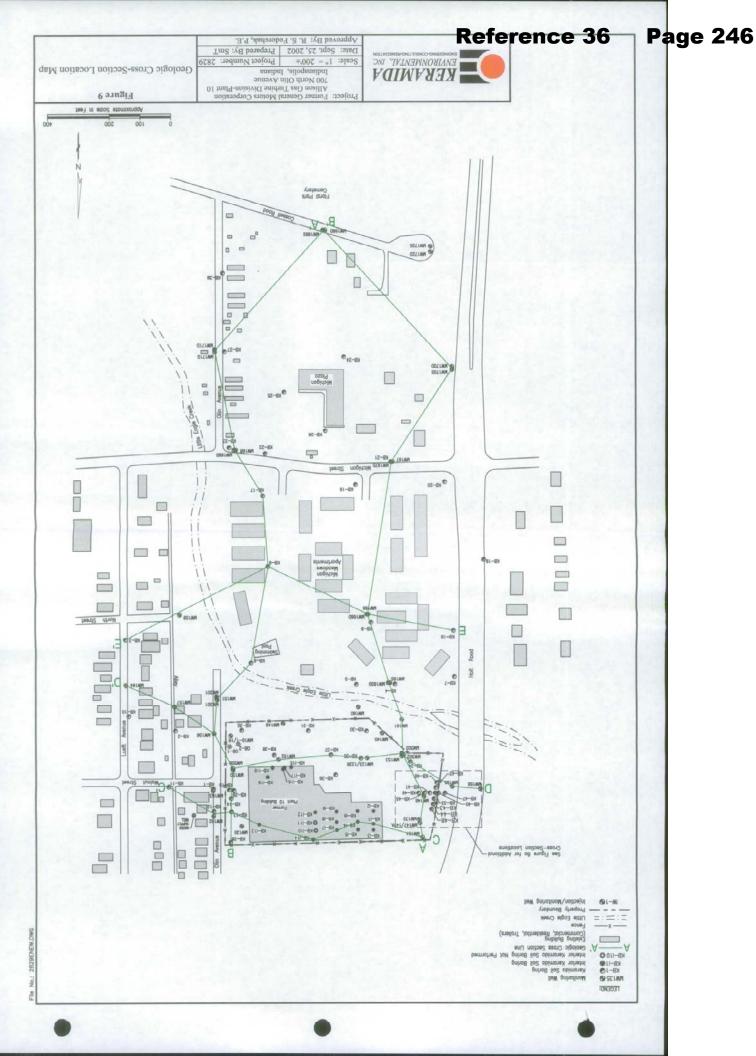

KB

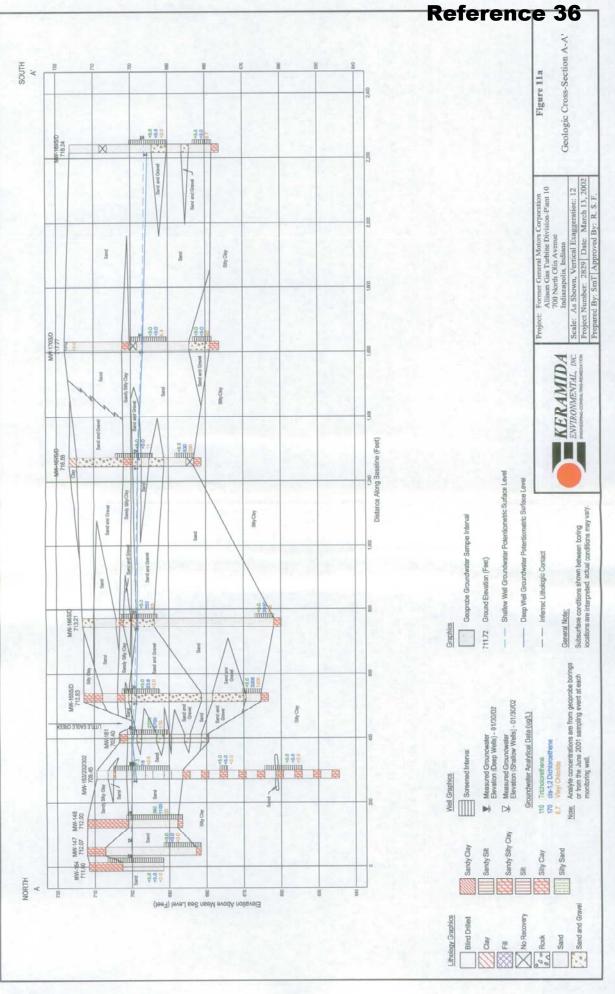

KEI Number: : etsO Photo Source: indygov.org Prepared by:

Former Allison Plant 10 Indianpolis, Indiana Figure 4 Aerial Photograph

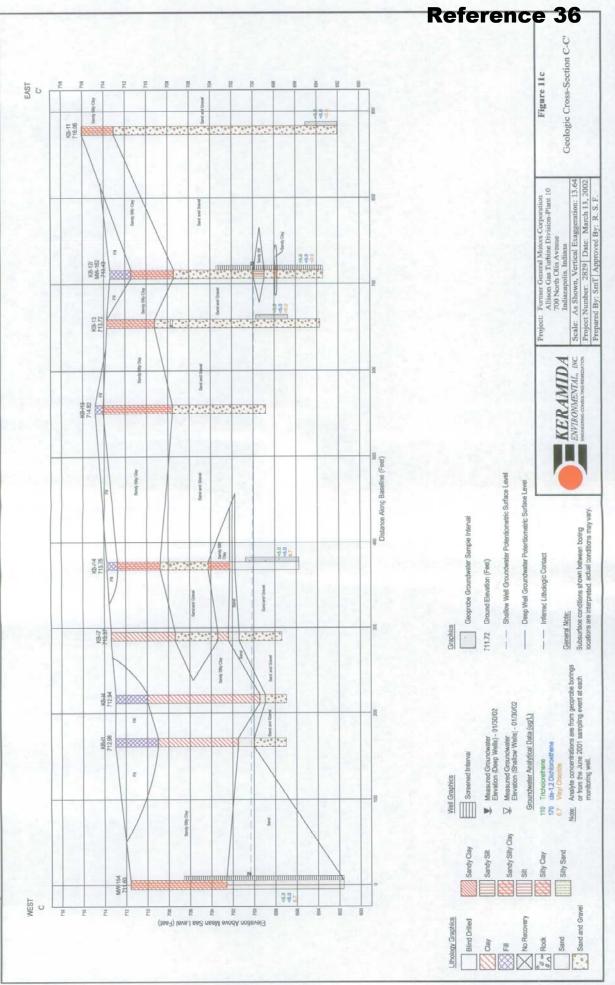
(317) 685-6600 FAX (317) 685-6610 Indianapolis, Indiana 46202 330 North College Avenue KERAMIDA Environmental, Inc.

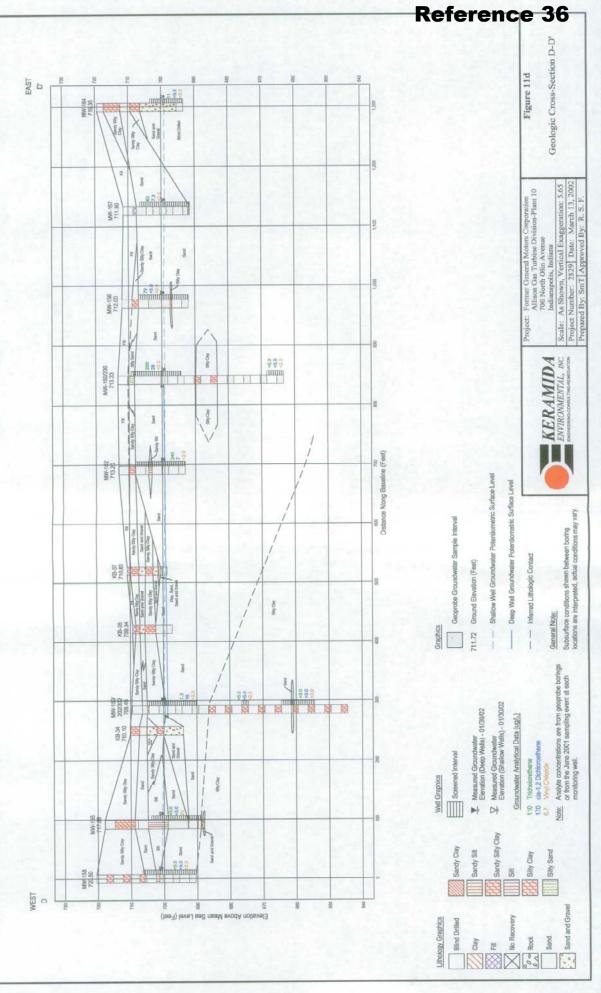

KERAMIDA Environmental, Inc. 330 North College Avenue Indianapolis, Indiana 46202 (317) 685-6600 FAX (317) 685-6610

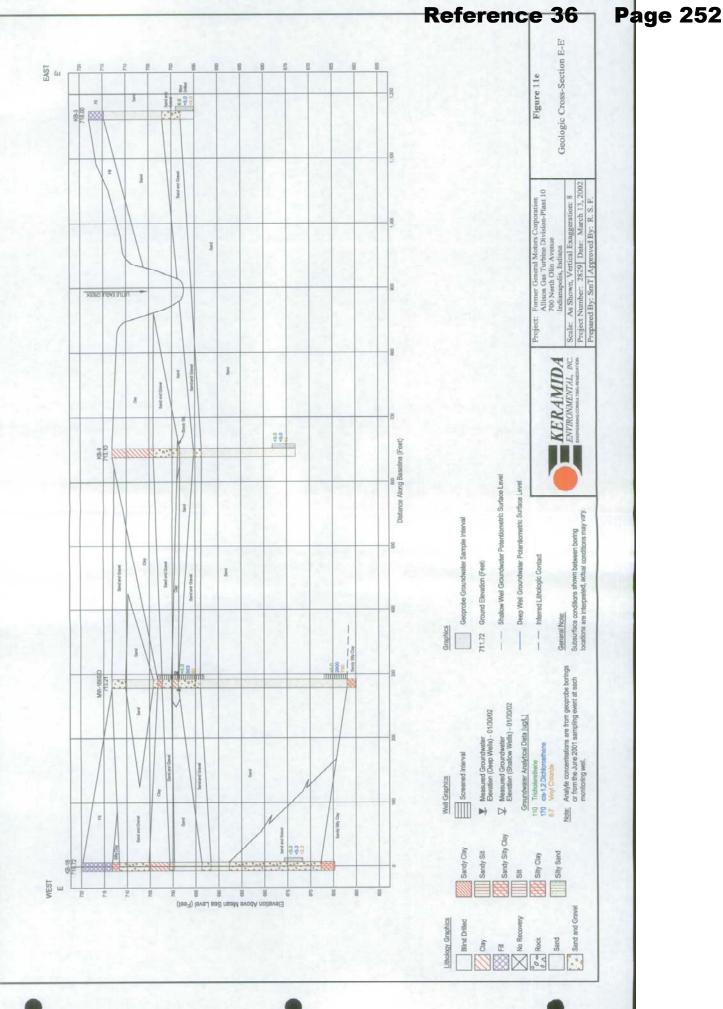

Figure 5
Site and Surrounding Area Use Map
Former General Motors Corporation
Allison Gas Turbine Division, Plant 10
700 North Olin Avenue
Indianapolis, IN

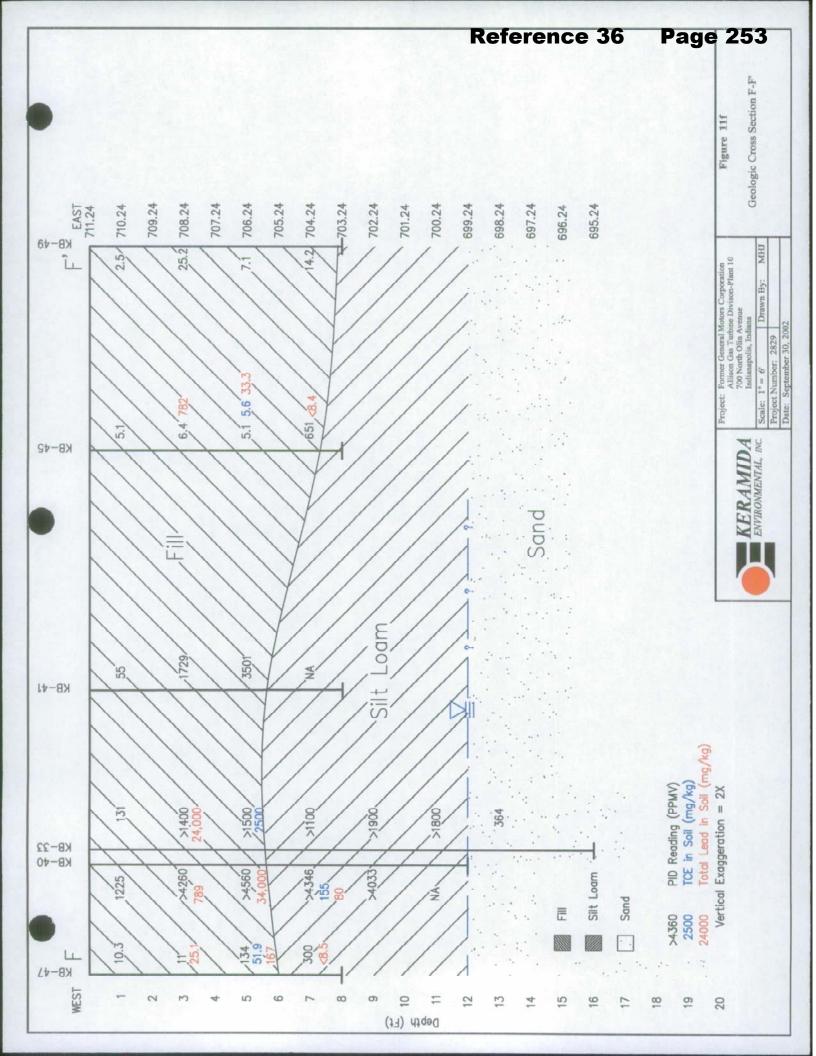

Prepared by : Stan Hunnicutt
Approved by : Frank West
Date : 12/4/2001

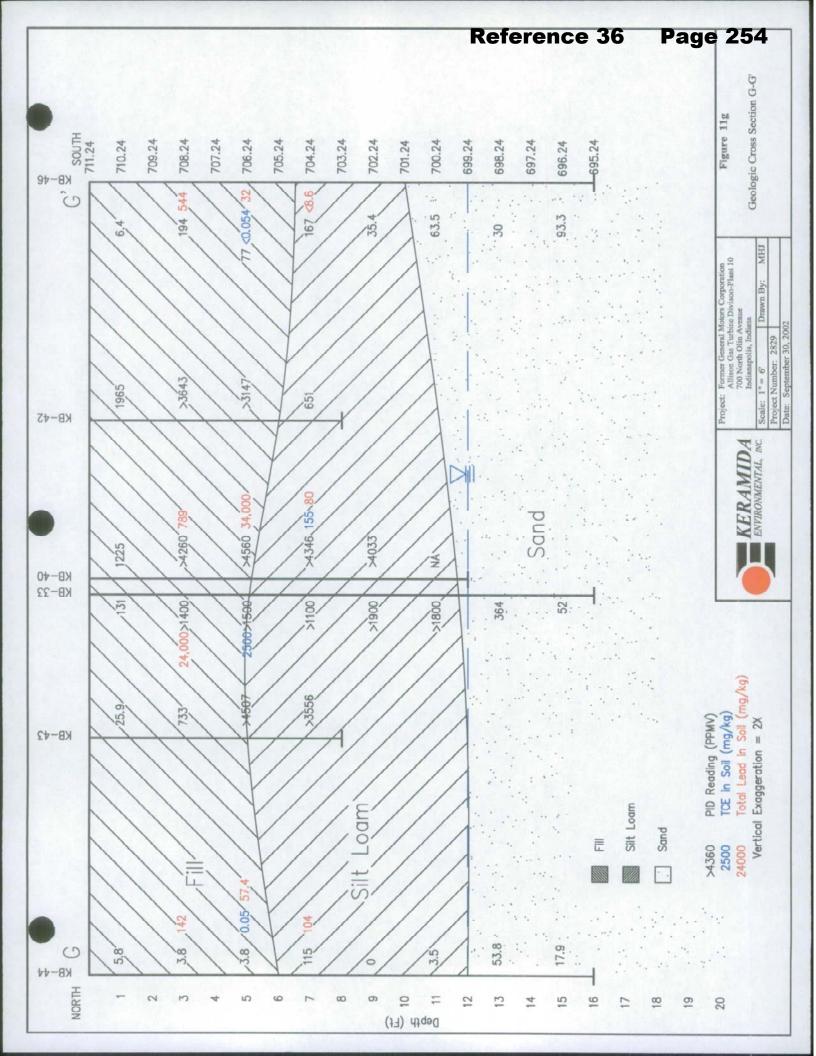

Project Number: 2829 E

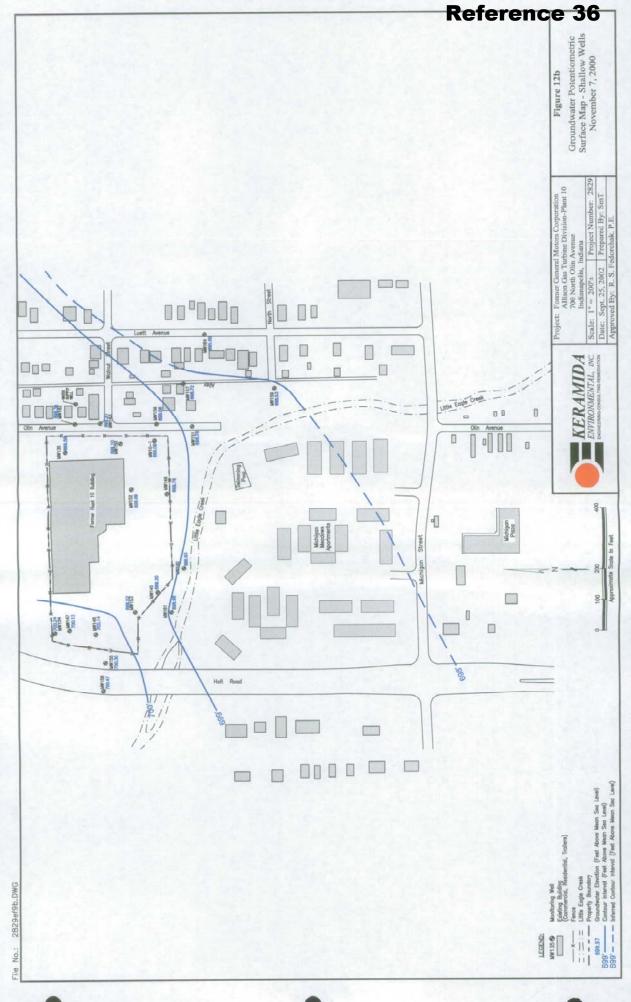


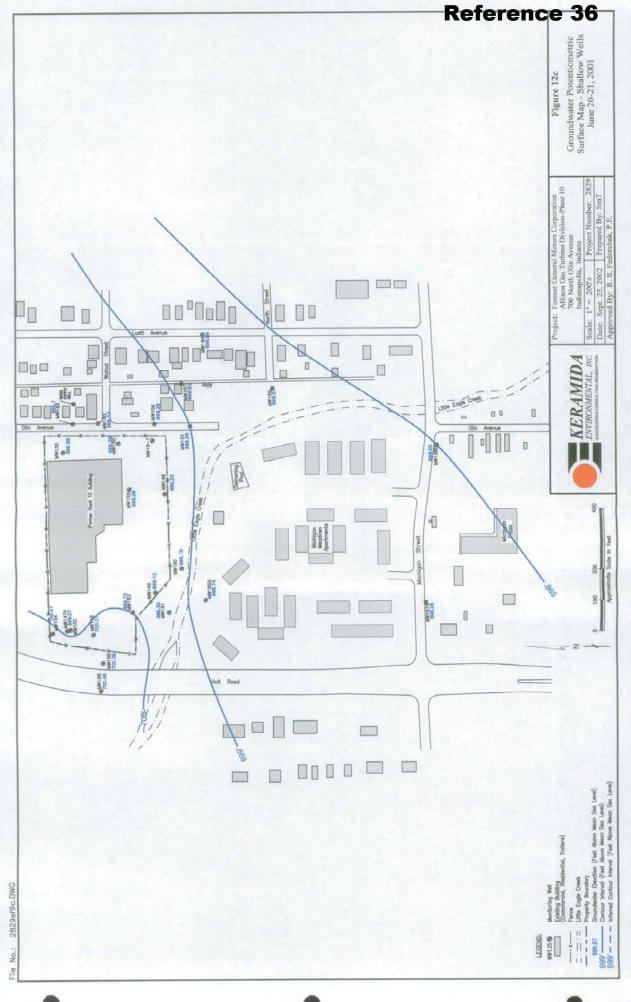


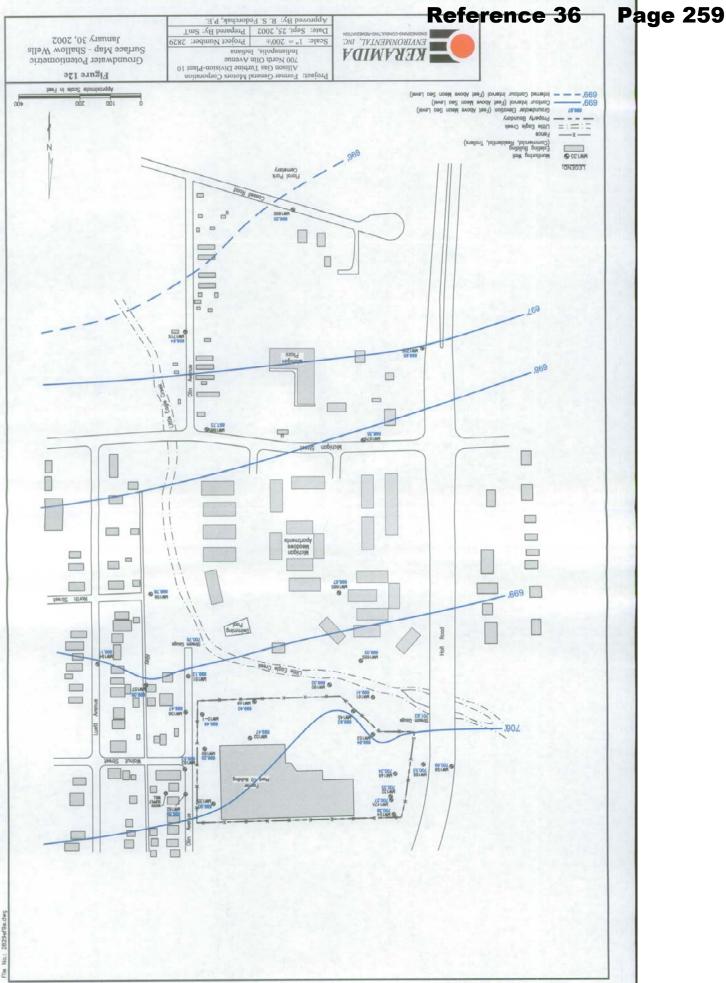


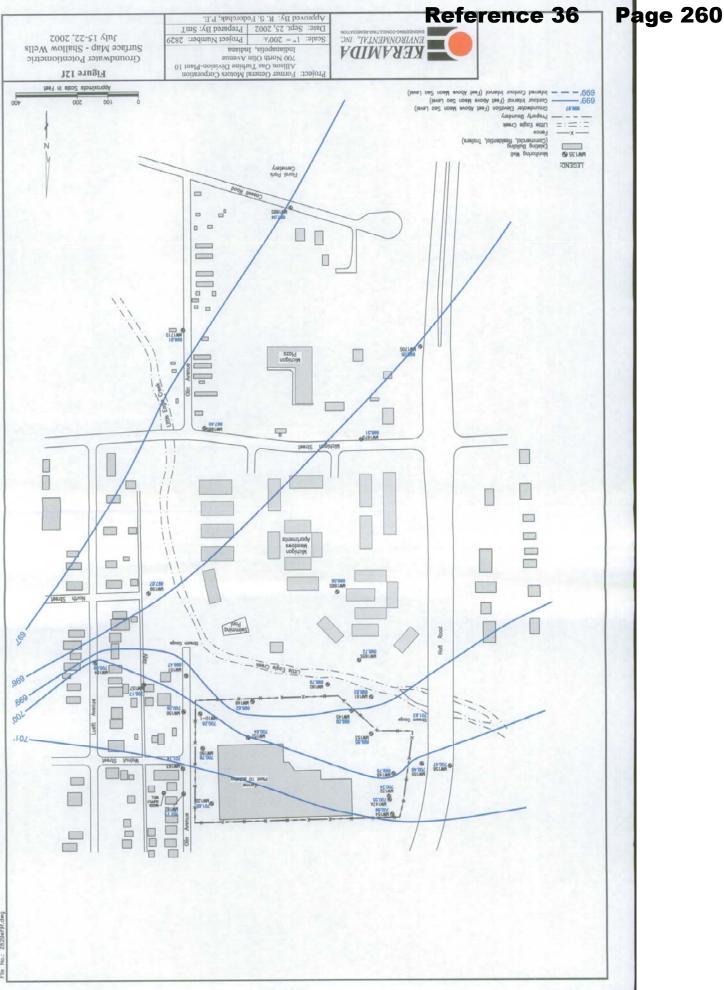


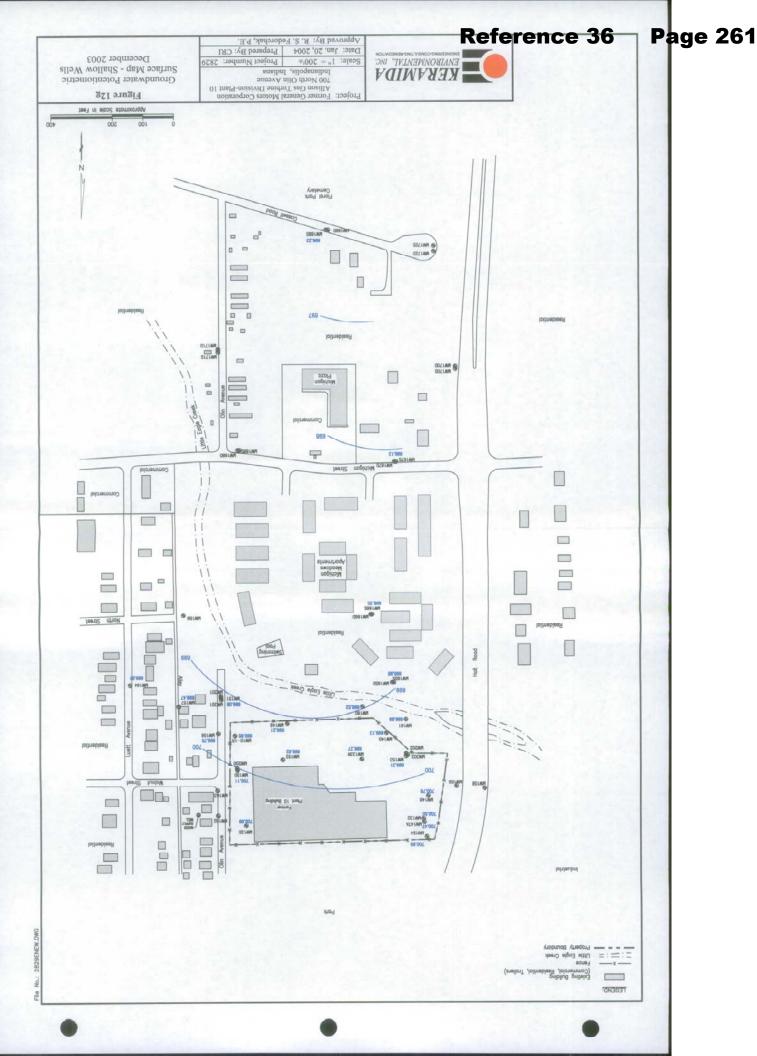


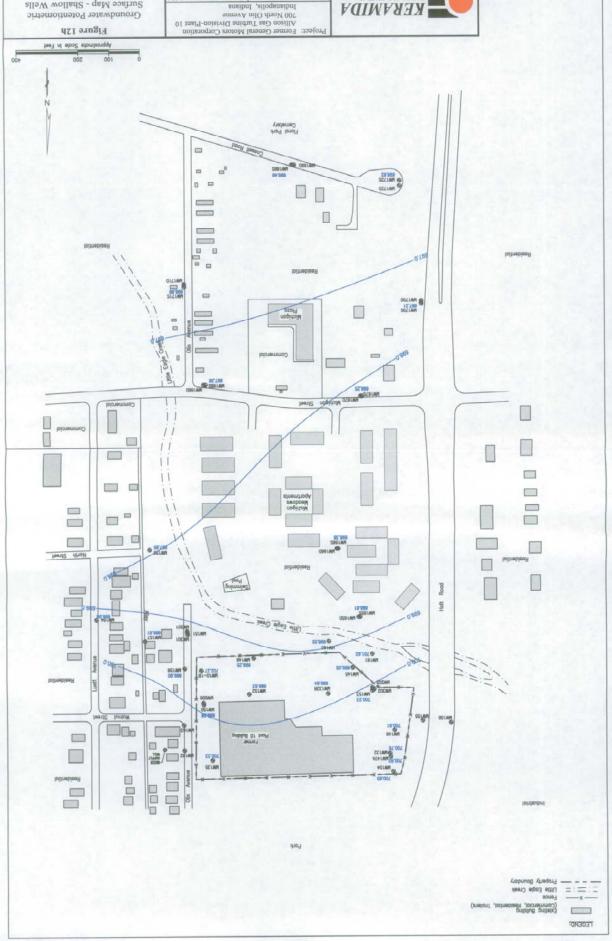


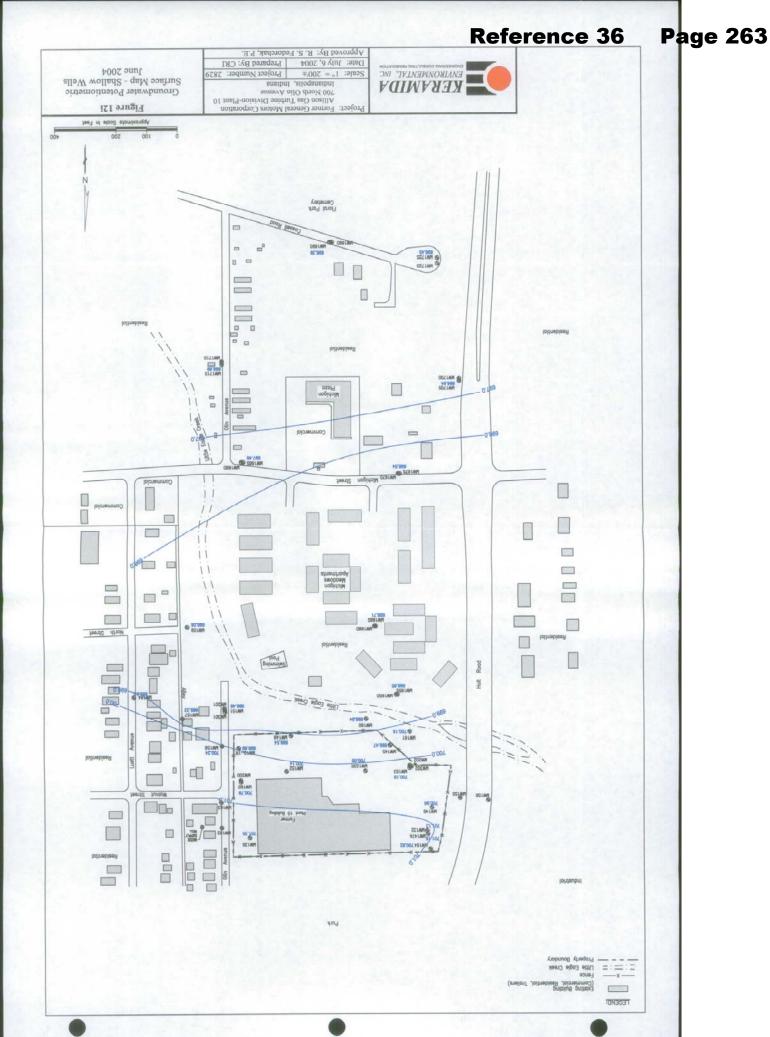


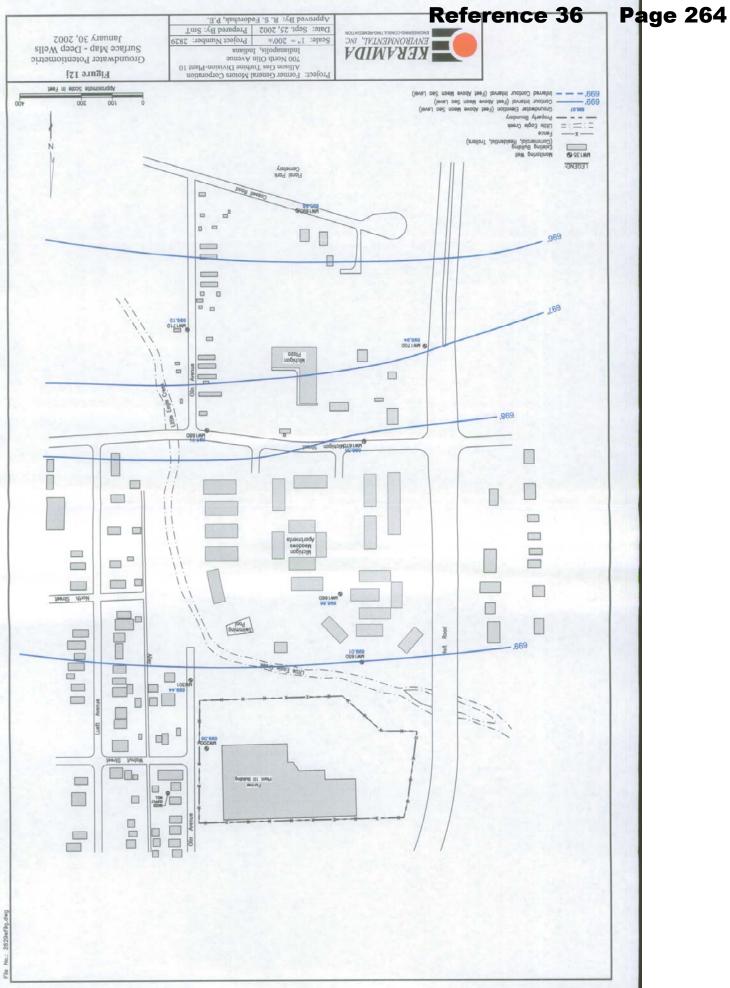


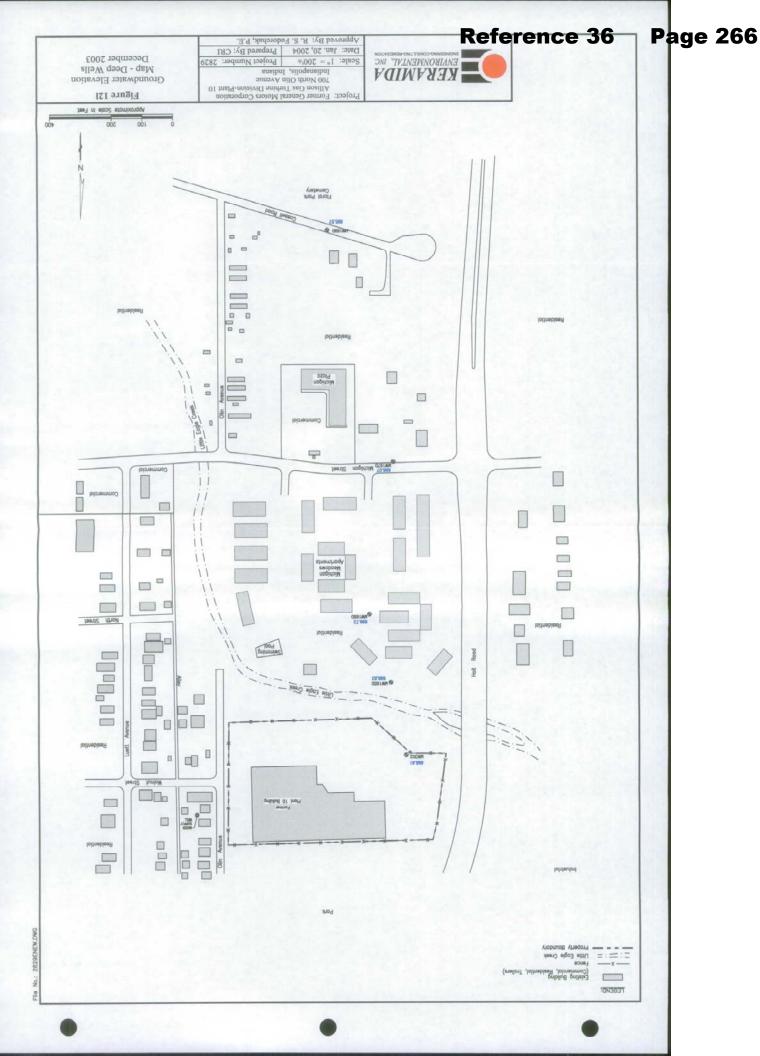


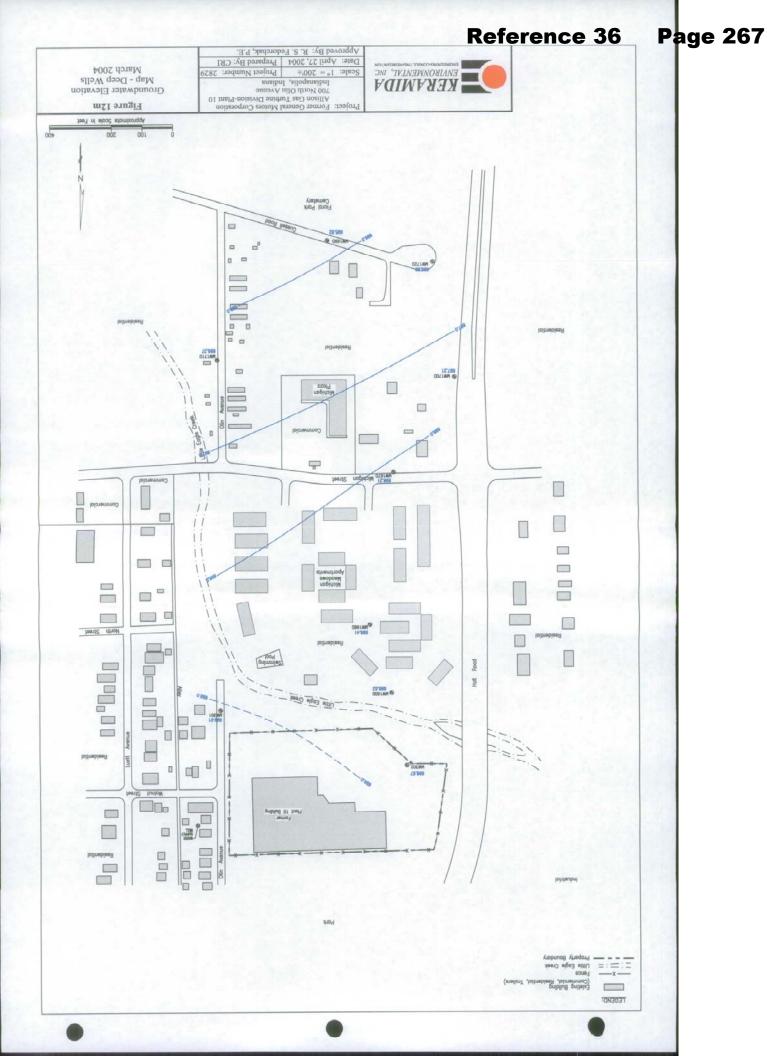


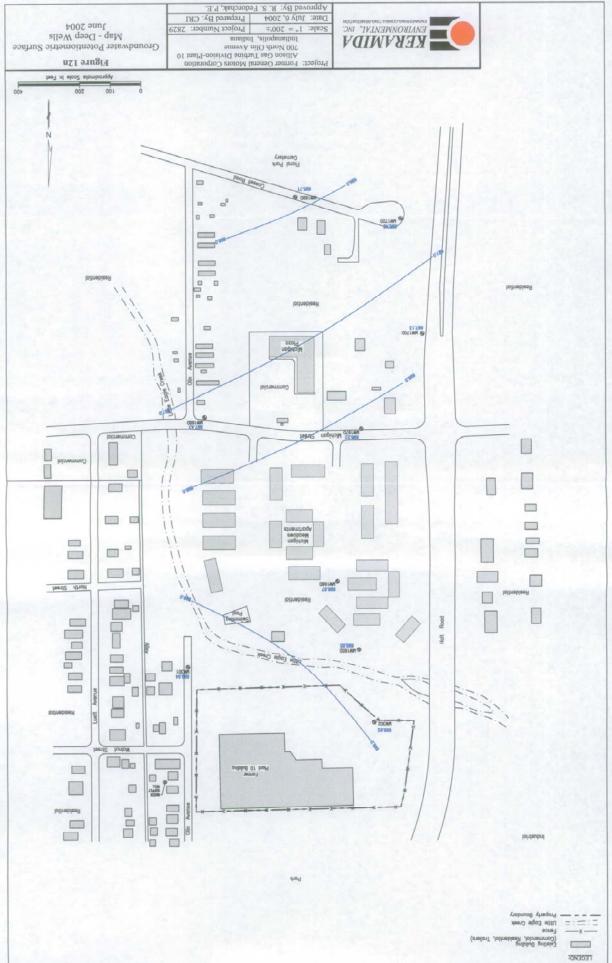


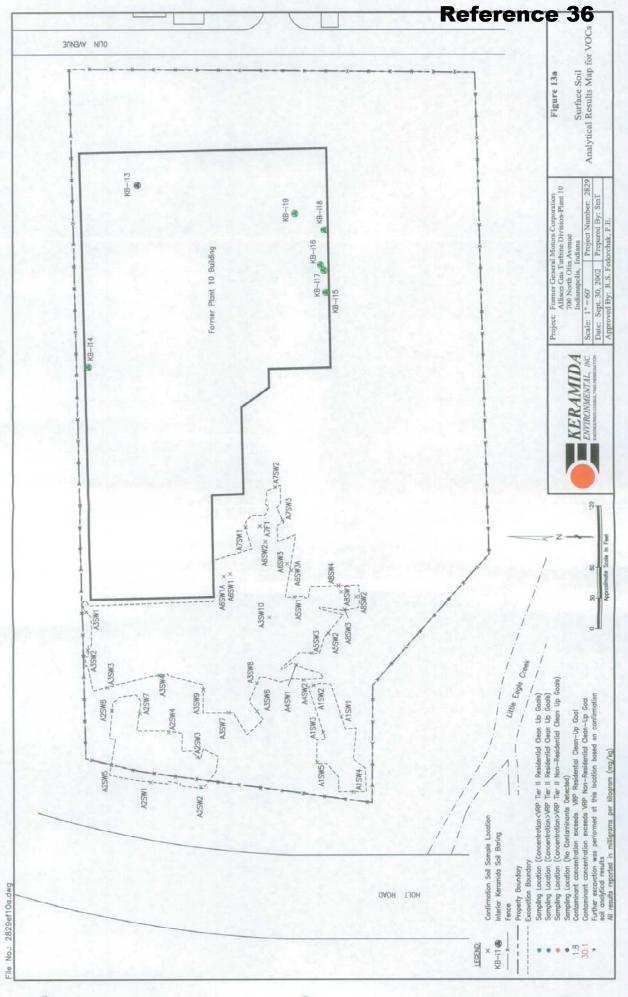

Page 258

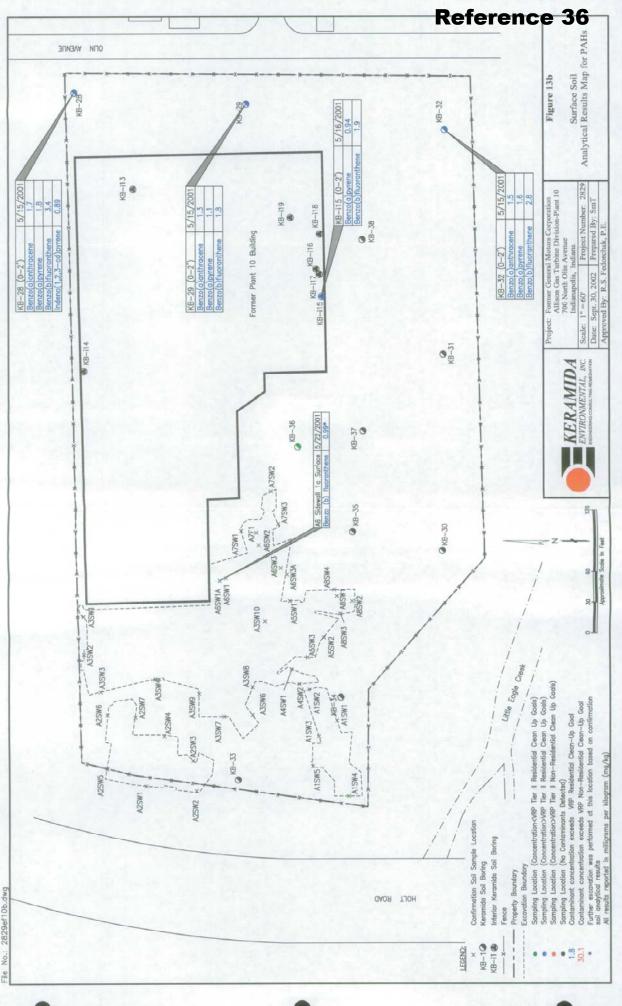


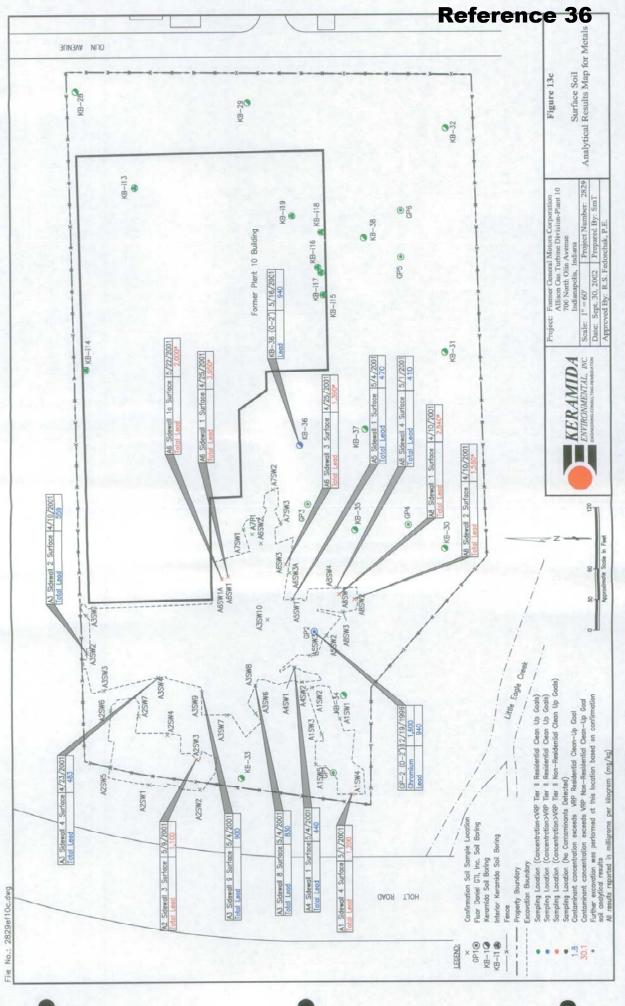


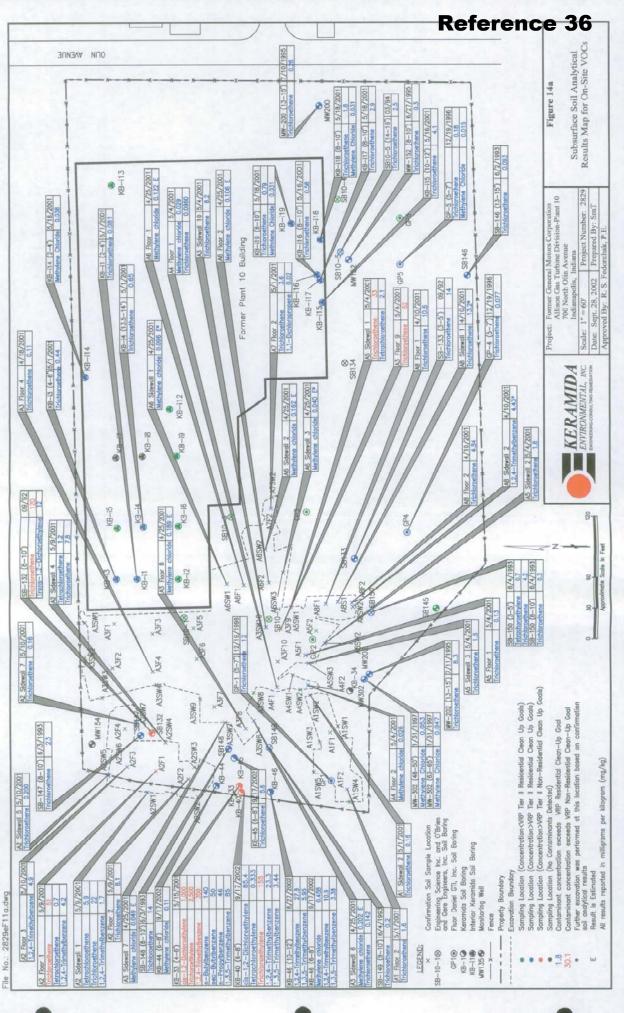


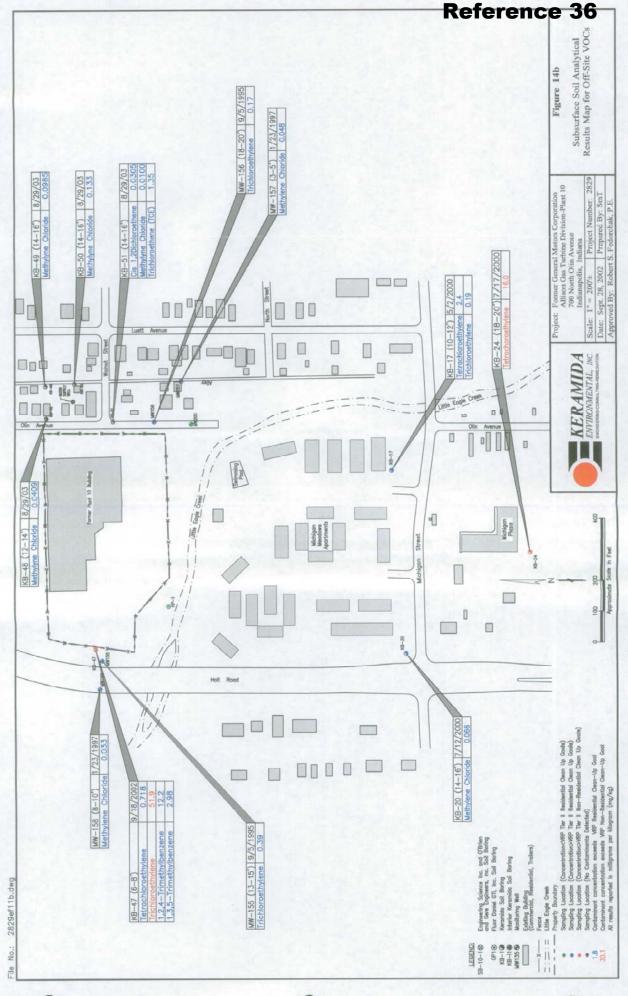


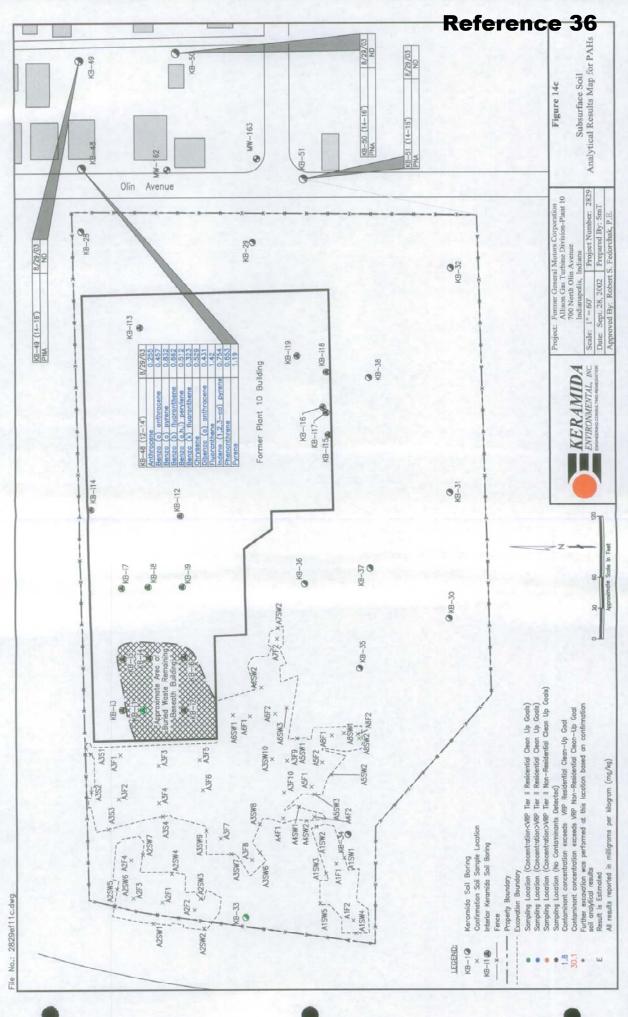

ATOM ATOM

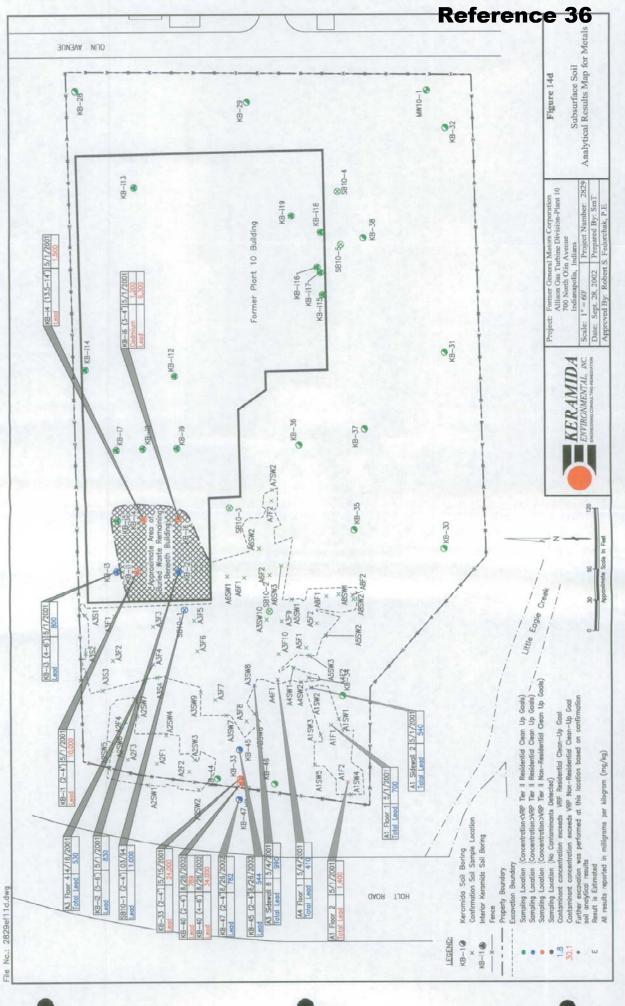

000

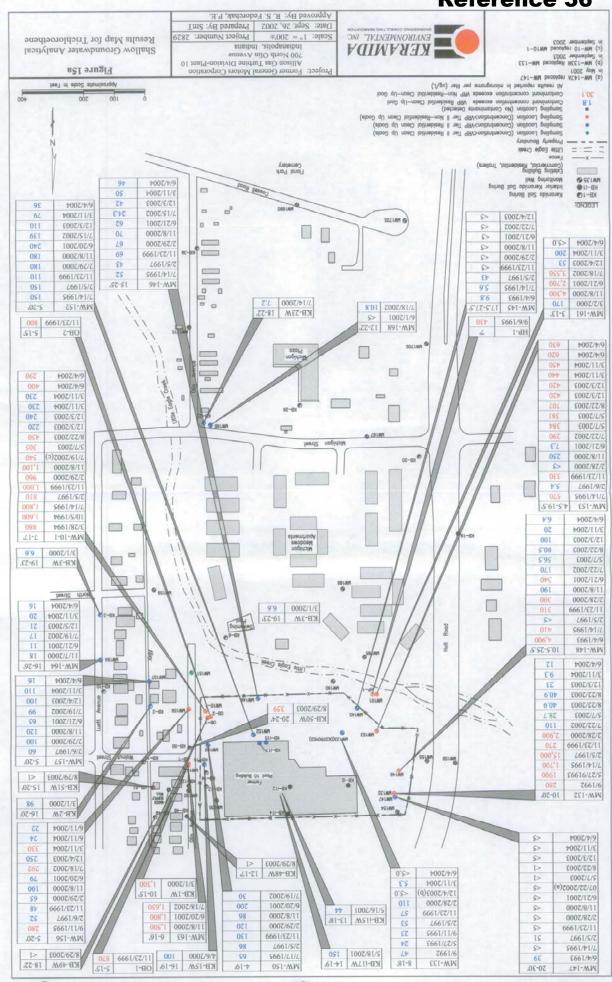


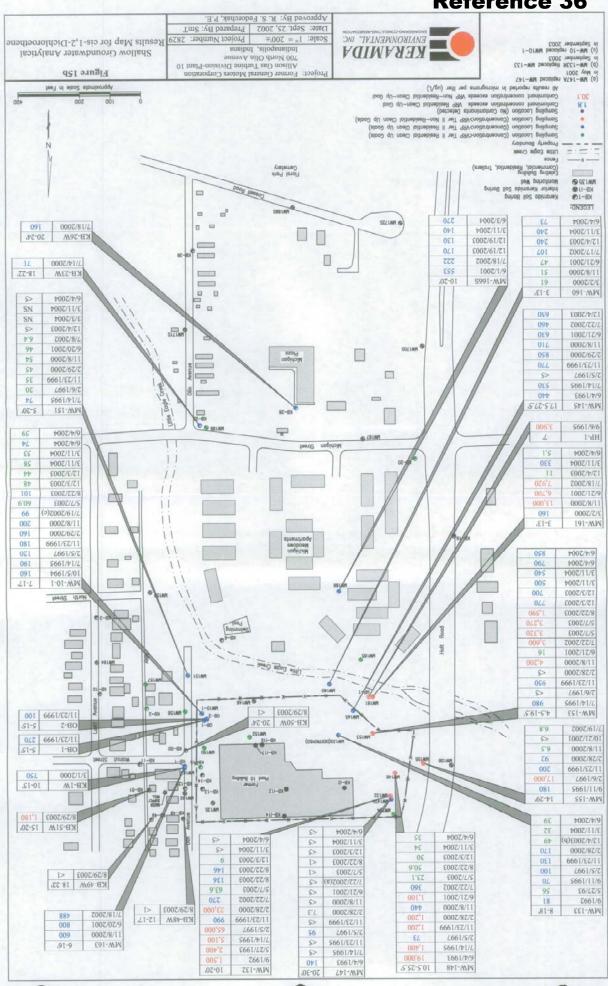


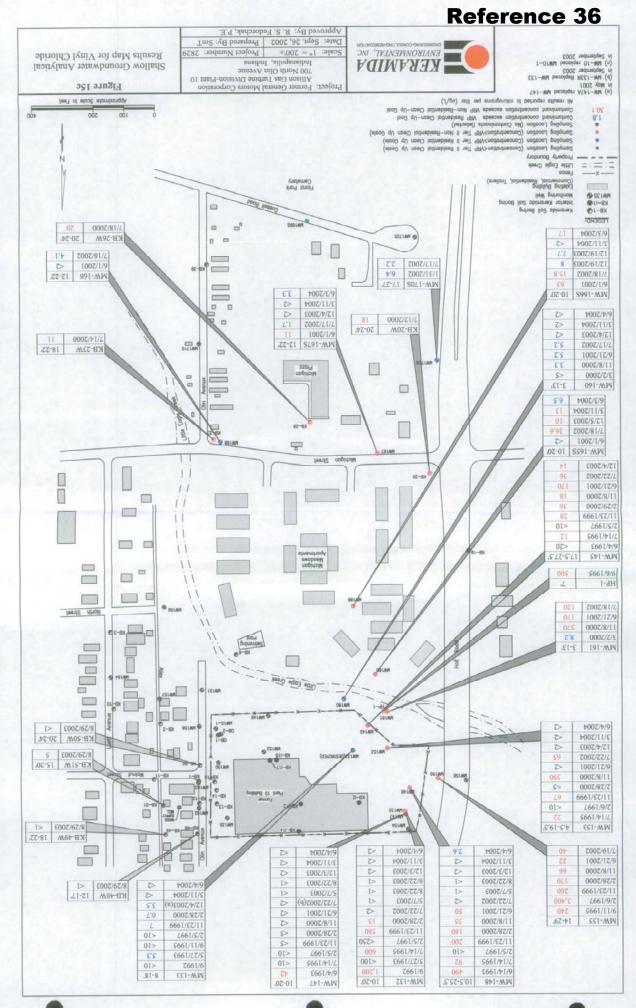


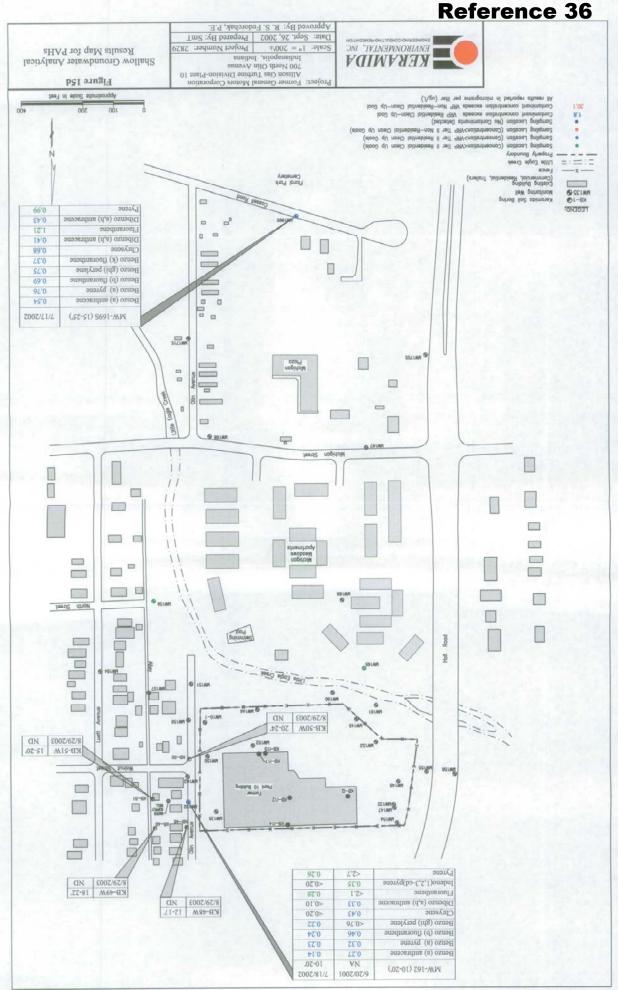


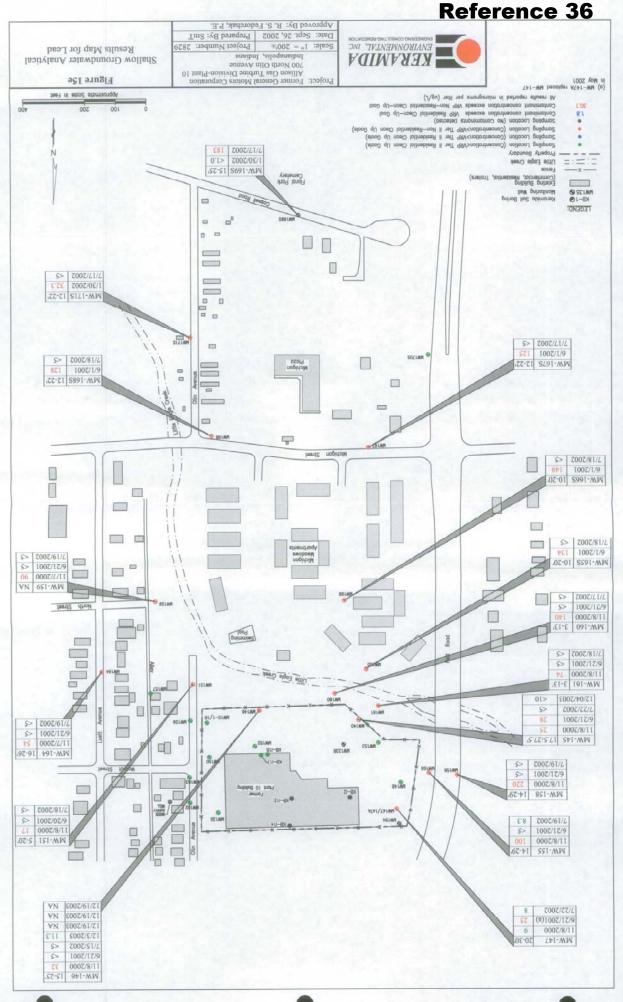


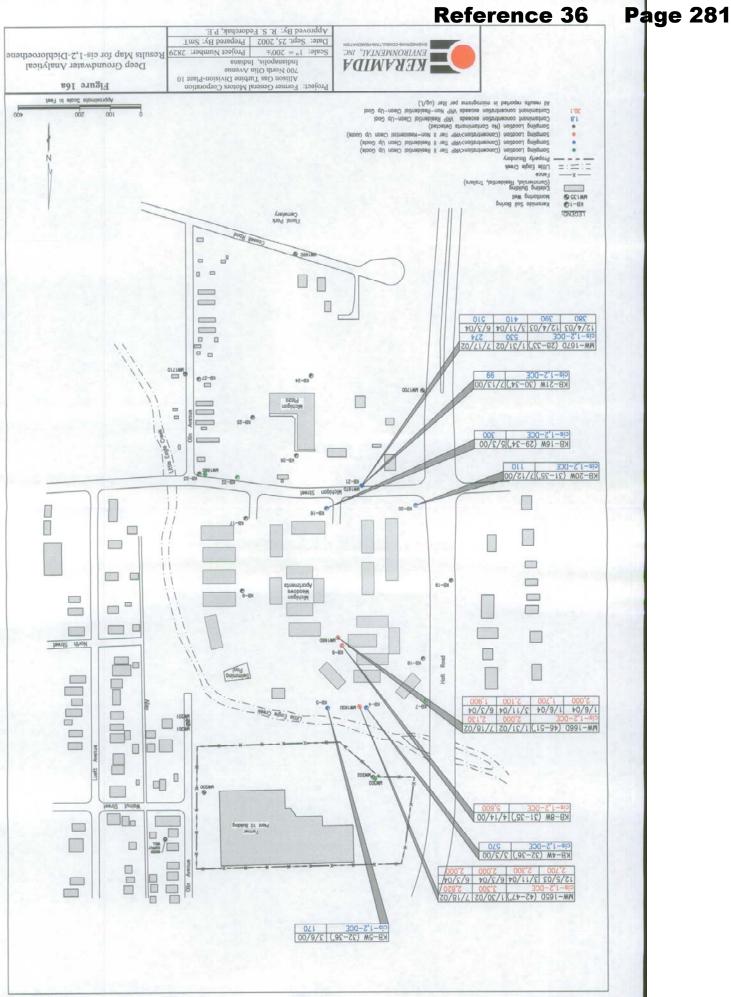


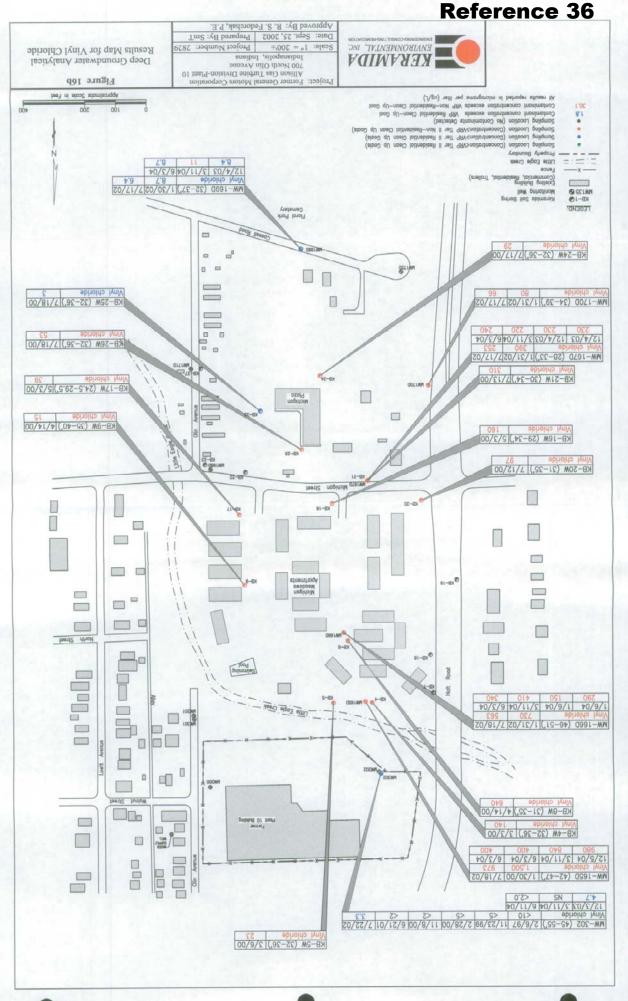


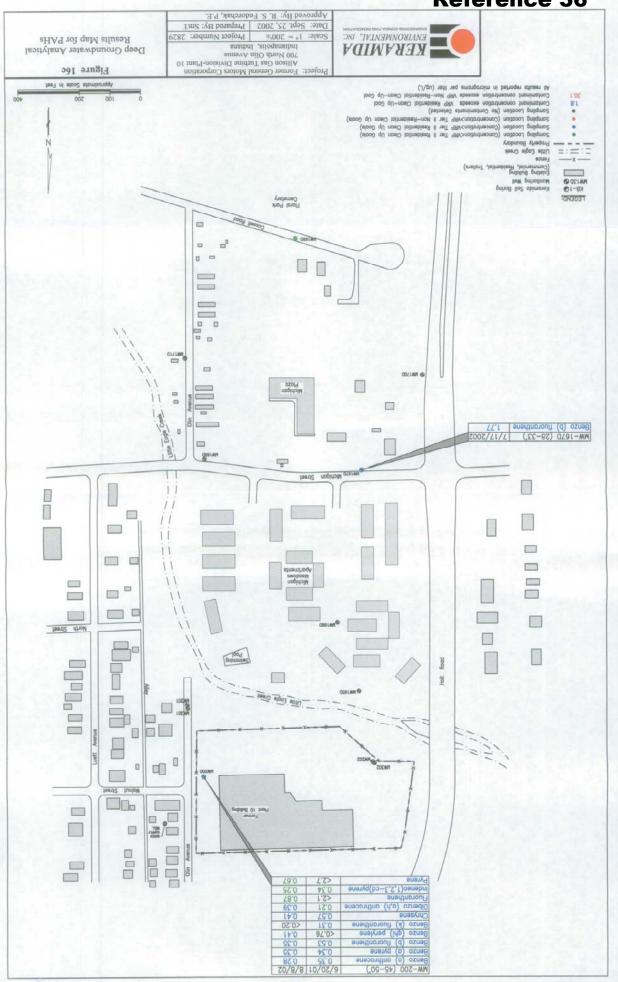


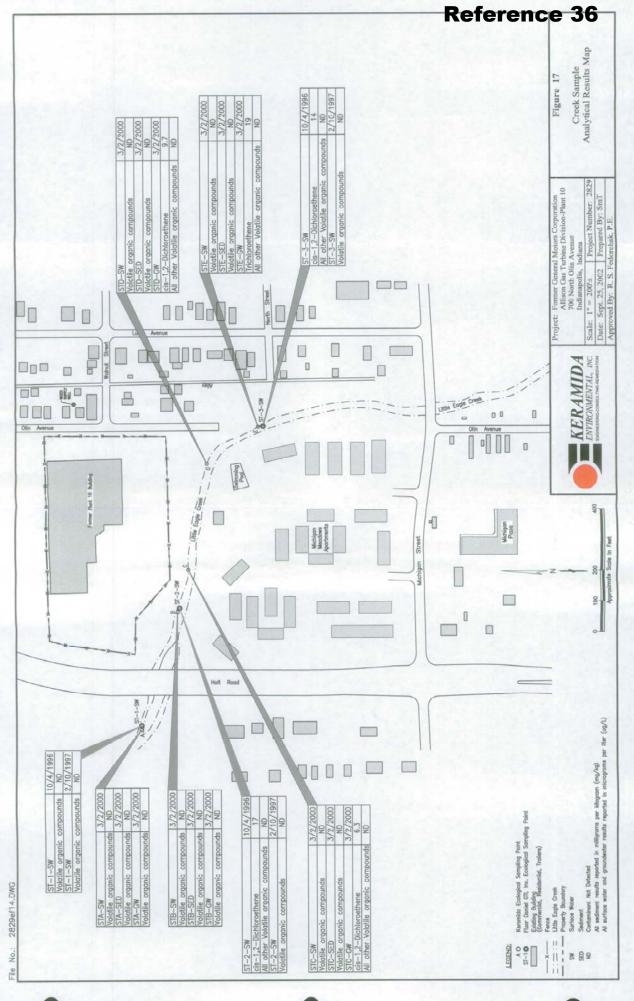

Reference 36




Reference 36






Reference 36 Page 284
 Scale:
 In = 200°±
 Project Number:
 2829

 Approved By:
 R. S. Fedorchak, P.E.
 ENVIRONMENTAL, INC. Deep Groundwater Analytical Results Map for Lead Project: Former General Motors Corporation
Allison Gas Turbine Division-Plant 10
Tob North Olin Avenue
Indianapolis, Indiana
Seale: It = 3000t. | | KEKYWIDY Figure 16d 000 001 Approximate Scale In Feet Poundonia (Gonoentrotion-CMP? Tier il Residential Clean Up Gools)

g Locodian (Conneentrotion-CMP? Tier il Residential Clean Up Gools)

g Locodian (Conneentrotion-NMP: Tier il Roin-Hesialdantial Clean Up Gools)

g Locodian (Por Connentrotion Roseds NMP Residential Clean-Lp Gool
mont connentration succeeds NMP Residential Clean-Up Gool
in reported in micrograms per Rex (ug./.) Floral Park Cemebary Jeents Athon 0 60 **4**0 olnut Stree MW-200 (45-50') 11/8/00 6/20/01 7/19/02

Reference 36

Resulting of MERANTIN ACTUAL A Approved By: Page 286 Prepared By: CRI Date: 10.30.03 and Soil Analytical Summary Map Project Number: 2829 Scalc: 1" = 200'± Project: Former General Motors Corporation Allison Gas Turbine Division-Plant 10 700 Morth Olin Avenue Indianapolis, Indiana PCE in Off-Site Groundwater Figure 18 Floral Park Cemetery Cossell Road 0 0 7/17/2000 16.0 (mg/Kg) 00 // 0 7/14/2000 20.0 (ug/L) 7/18/2002 52.7 (ug/L) 18-55. 891-WM ST SSIAM 5/2/2000 2.4 (mg/Kg) **"** Jaeutz rthoM Road Holt Fence Little Eagle Creek KENALIDA Monitoring Well Woter Samples are denoted as (ug/L) Water Samples are denoted as (ug/L) Water Samples are denoted as (ug/L) @ 831-WJ TEGEND:

Figure 22a
TCE vs. Time
Reductive Dechlorination Bench Test
Allison Gas Turbine Division Plant 10
Indianapolis, Indiana
KERAMIDA Project #2829E

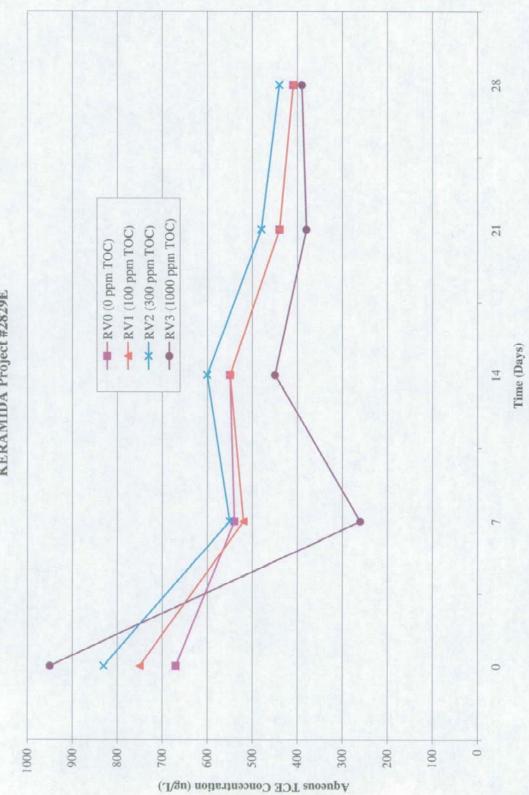


Figure 22b
Initial Aqueous TCE vs. TOC
Reductive Dechlorination Bench Test
Allison Gas Turbine Division Plant 10
Indianapolis, Indiana
KERAMIDA Project #2829E

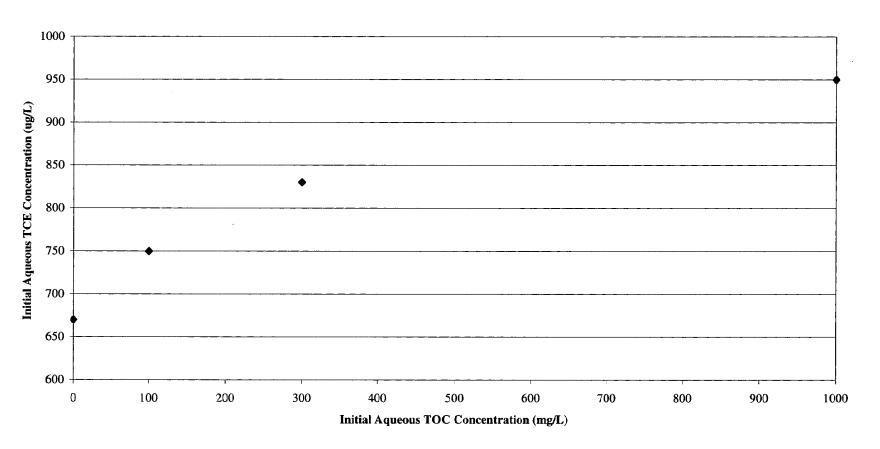
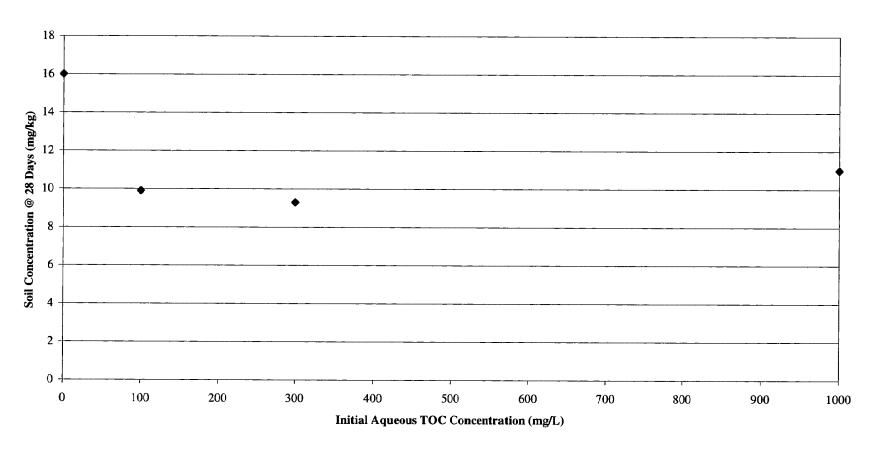
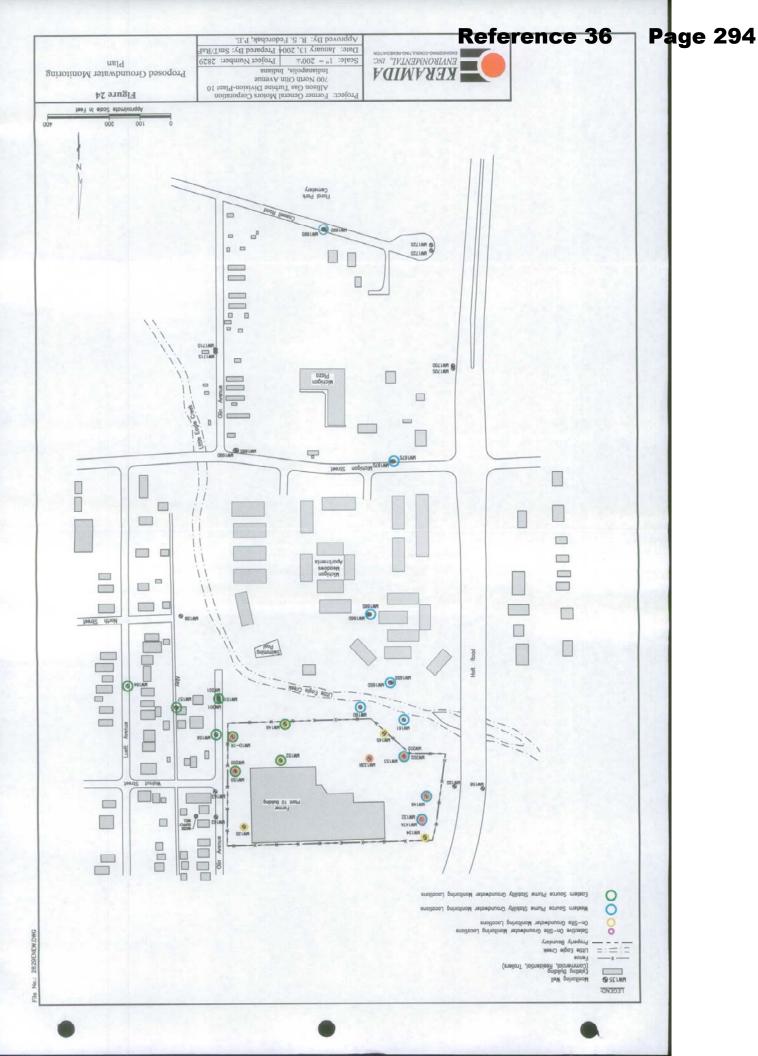




Figure 22c Final Soil TCE vs. TOC **Reductive Dechlorination Bench Test Allison Gas Turbine Division Plant 10** Indianapolis, Indiana **KERAMIDA Project #2829E**

	Month:		-								-																																								
k	1 2	3 4	5 6	7	8 9	10 1	1 12	13 14	15 16	17 18	19 3	21	22 23	24 25	26 27	28 2	30 3	1 32	33 34	35 36	37 38	39 40	41 42	43 4	4 45 4	6 47	48 49	50 51	52 53	54 55	56 57	58 59	60 6	61 62	63 64	65 66	67 6	8 69 7	0 71	72 73	74 75	5 76	77 73	79 80	81 82	2 83 /	84 85	86 8	7 88	89 90	0 91
Sub-Task	\dashv	\top	1		\top		\top	$\dashv \dashv$	\top		П	\top	\Box				П	11						П	\top		$\neg \neg$		П			П							\Box				T'		П	TT	\top	П	TT	Т	\Box
Sub-Sub-Task	\dashv		\top	_	\neg	\neg	$\top \top$			\neg	\vdash	\top	т				\Box	\top		\top																							\top			T			\top	\top	\top
MEDIATION	\dashv	+	$^{+}$	_	\neg	\neg	††	$\dashv \dashv$	\dashv	_	\vdash	\top	+-1	_			$\dagger \dagger$			\neg			\vdash	T	\top								\top	\top		\sqcap			\top	\top	\neg	T	\top		П	TT	$\neg \neg$	П	TT	\top	
SVE/AS		+	+	+	\top	$^{+}$	+		+		\vdash	+	+		\vdash	_	+	\top			-	†		++	$\pm \pm$	_				++	tt		\vdash			\vdash	\vdash	Ħ	\top	11				\vdash		+	\neg	П	11		\top
	x x		v	· v	v v	v ,	/ .	v v	v v	vv	v v	, v	v v	v v	V V	Y N	v	y y	y y	y x	y y	x x	Y Y	x ,	z v	v v	Y	-		+	\vdash	++-	+	\pm	+		H	++	+	\top	+	_	+	+	+	+	+	1	+	+	+
Venen Monitorina	XX) (()(· ·	^ ^	11	10	A A	<u> </u>	2 2	V S	A V	^ ^ ^	 	0 0	V	1	2 2	A A	2 2	V V	V V	v v	v,	· ·	v v	~ V	_	\vdash	+	\vdash	++-	++	+	_	\vdash		+	++	+	_	++	+	+	+	++	+	+	+	_	+
	X X	^ ^	^		X X	A /	1	A A	λ A	^ ^	^	X		X	X		X	^ ^	^ ^	^	^ ^	X	^ ^		X		X	H-		+		++-	++	+		-	H	+	$\dashv \dashv$	+	-	+	+-	+	+	++	++	++	+	+	+
Permanent Gas Monitoring	+	+	-		-	-14	++		A X	^	1,					_	1.2	x	^ x	→^	x	X		x		x	X	-	\vdash	-		++-	++		-	+-	+	+-i-	+		+	+	+	+	+	++		+	+	_	+
Reporting		_	-	X		Х		х	- X	\vdash	X	44	λ .	X	H	Х	+	<u>`</u>	- A	-	^_	⊢ ^	-	^	++	^	^	+				₩-	1-1			-	\vdash		++	-	-	+	+	+-	++	++	+	+	+	_	+
On-Site Completion Report		\perp	_	-	_	-	+		-	-	₩.	+	+	_	H		+	+		-	-			-		-	-			-	\vdash	-	-	X			₩		+	+	+	++		++	++	++	+	++	+	+	+
Hot Spot"	\perp	\perp		\perp	\perp		\perp		_	$\perp \downarrow$	Н	11	44				11	\perp		_	1	├	<u> </u>	1	+				\vdash		1	-	+	\perp			 -	+			-	++	-	₩	++-	++	+-	+	+	-	4
Installation	\perp		_		\perp	7	(X	\perp		\perp	\perp	1	44		Ш	\perp	11				\perp	1	\vdash	₩.	$\perp \perp$				\vdash		<u> </u>	₩.	+	\perp			\vdash	44	+		_	+	+	+	+	++	4	+	+	+	4
Startup				1	\perp		X	\perp		\perp	Ш	\perp			$\sqcup \bot$		\perp		_ _	_	1	\perp	\sqcup	1	$\perp \! \! \perp$	\perp			Ш.	1	\vdash	11	\perp	\perp		<u> </u>	11	\perp	\perp		_ _	+	+	₩-	+	++		+	44	-	44
O&M							X	x x	X X	x x	x)	(x			X X	x >	X	x x	X X	_	x x	X X	X X	X 2	x x			$\sqcup \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$			1	1	$\perp \downarrow$	\perp	\Box	Ц_	\perp	44	$\perp \perp$	_ _	_	44	\perp	$\perp \perp$	4	++		\vdash	$\perp \perp$	-	+
Soil Monitoring								$oldsymbol{ol}}}}}}}}}}}}}}}}$			Ш			х						X				\perp			X		Ш				\perp			Ш_	Ш	\perp	\perp			\perp	\perp	\perp	4	$\downarrow \downarrow$	'	\sqcup	$\perp \perp$		⊥-'
Reporting														X				\perp			x						X						Ш			$\sqcup \!\! \perp$						\perp			1	$\perp \perp$	'	\sqcup	\perp		\perp
Soil Excavation/Disposal						7	κx			П	П				П		П																													$\perp \perp$	'	Ш			\perp
On-Site Completion Report			1		T																				\top	ı								X									١								
toremediation			7								Ħ																										П					П			T	TT			TT		
O&M	\neg		_	-	x x	x z	кx	x	X		x ,	C X	x x	хx		х	11	хх	хх	x x	x	l x	\Box	x	x x	хx	x			TT									\neg					\Box	\Box	11		П	\top	T	T
Leaf & Gas Monitoring	\neg	+		+-	x		x	-	+		17	x		X	\vdash	Ť	+		x	X					x		x			††	\vdash	Ħ		\top		-1-	\vdash		$\exists \exists$	\top	_	11		П		11			\top		1
Reporting	\pm	+		+	+^	х		x -	x	\vdash	x	1	х	X	\vdash	х	+	x	X		x	x		x	+	x	X			$^{++}$	++	Ħ				-	$^{++}$		\dashv		-	11		\top	+	11		\vdash	+	\perp	+
On-Site Completion Report	-	-		+	+	^	+	^	- ^		+^+	+	_	- ^		A	+	1		-	1	++^		11	+	+			++	++-	H		+++	x		-	$^{+}$		$\pm \pm$	-	_	+		+	$\pm \pm$	++		+	+	_	+-
ductive Dechlorination	+	-	-+	+	\pm		+	+			+	+	+			+	+	+		-		+		-	+	+		\vdash		++		+	+	-		\vdash	+	+	-	-	_	+	+	+	+	++	+-	+	++	_	+
		+	+	++		-+	+	+	_	-	x	+	-	-+-	-		+	+	+	-		+-	-	++		+		+	++	+- -	++	+	+	-			+	++		+	-	+	+	+	+	++	+	+	+	+	+
Bench Testing		+					+	+				+-+	-		Н-	-		+-	-			++	-	+	-	-		-	-	+	+	++-	+	-		-	+	++	+	-	-	+++	+-	+	+	++	_	+	+	+	+-
Injection Well Installation	\dashv	+	-	++	-	\vdash			_	X		+			₩-	-	++	+		-		+		+	++			-	++	+		+	+	+		-	+	++	+	-	-	+-+		+	+	++		+	+	+	+-
Field Application	\perp	-		-	-	\sqcup	+		_		\vdash	+	Х		Н-	-	+	+-		+		+	⊢⊢	-	+	+			\vdash	++		-				H-	+	+	+	-	+	++	+	₩	++	++		+	+	+	+
Reporting		\bot	_	\perp		\vdash	+	\perp	_	-	₩	++			X		44	4		4	1	++	Н-	++		-		Н-	\vdash	++	-+-	₩-	+	+		Н-	₩	++	+	+		++	-	₩	++	++	—	++	+	+	+
ITORING							11				Ш	\perp			Ц.	Ш.	\perp				$\sqcup \! \! \! \! \! \perp$	1		1				<u> </u>	$\perp \perp$	+		\vdash	+			Ш-	1	\perp			-	+	_	₩.	+	++		\vdash	+	+	+
ective On-Site Sampling												Ш			Ш						Ш			\perp	\perp				Ш.		$\perp \perp$	Ш.									_	\perp		44	\bot	11	'	$\perp \perp$	\dashv	\vdash	_
Monitoring			7		X		X		X	x		x		х	x		X		X	X		x	\ \ \ \ \ \		x		X						\perp			L.	Ш					\perp		1	\perp	\perp	'	$\perp \perp$	$\perp \!\!\! \perp \!\!\! \perp$	4	⊥'
Reporting				x		Х		х	Х		x		х	x		x		x	X		х	X		x		x	Х		Ш				\perp			$\Box \bot$						Ш		\perp	\perp	44	'	1	Ш	\perp	1
On-Site Completion Report											П				П				T				Ш						Ш					X				Ш				Ш		$\perp \perp$	\perp	\perp		$\perp \perp$	\perp	4	_
-Site Sampling		\top	T			П				П		\top			П	П	\sqcap		\top			T		TŤ	П				П		П		П	П				П	П	П			T				⊥		\perp		L
Monitoring	\Box	\top	十	\top		\Box	\top	\top	х	TT	$\top \top$	\sqcap			X	\Box	11					x		\Box	\top			Х	П	X	X	П	x			П	П		77			T	T	П	\Box	TT	, T	\prod		ıΤ	
Reporting		+	$^{+}$		+	\vdash	+		X	\vdash		+	-	1	H	x	\top	\top	1-			1 x	TT	$\dagger \dagger$	\top				x	x		X		X								\Box			T.	TT			\top	П	T
On-Site Completion Report	\pm	+	$^{+}$	\Box	+	\vdash	++	\Box	-12	$\vdash \vdash$	+	+		\vdash	H	17	+	+				††	+	+	\top	1		H	П	11		\Box	+	x			TT	\top	$\top \top$			\Box	\top	\Box		11			\Box	T	
me Stability Sampling		+	+	+	+	H	+	+	+	$\vdash \vdash$	+	++	-		H	+	++	+		+-	1	+	+	++	++				\vdash			++	+			H		+	+	\top		+	+		+	11		TT	11	\sqcap	\top
Monitoring	+	+	+	+	+	\vdash	+	+	x	_x	+	x	+	v	l x	+	1	+-	v	v	+	x	\ \ \ \ \	+	Y	+	x	x	+	x	T x	+	x	+	x	x	+	x	+	x	- x	;;;;	x	+	x	++	x	#	x	x	×
	+	+		+	+	\vdash	+	+	^ x		x		X	^ x	-	x	+^+	x -	A X	 ^	x	1 x		x	+^+	x	X		x	X		x		x	X		x		x	X	-	x		x	1 x		X		X		x†
Reporting	+	+	+	+-+	+	\vdash	++		- ^	\vdash	^	++	Α.	×	\vdash	^	+	^	1	-	^	++×	\vdash	11	++	^⊢	Α.	\vdash	^	+ + ^	++	+^+	+	-		Н-	1^	++	^	+^	+	+++	+	+	++^	++		+	+~+	一十	+
Completion Report		-	+	+	_	\vdash	++		-	\vdash	++	++			Н-	+	++	-	+-		\vdash	+-	-		+	-		\vdash	+	++	++	+	+	+	-	Н-	+	+	+	+	+	++	+	++	++	++		++	+	\vdash	-
eductive Dechlorination		4	\perp	+		\sqcup	\perp	\perp	_ _	$\vdash \vdash$	\sqcup	$\perp \downarrow$			Н-	\vdash	\perp	-			\vdash	+	-	++	+	_		\vdash	\vdash	+		++	+	+	-		++	-	\dashv		-	+	+	+	+	+		+	+	\vdash	+
Baseline Sampling		\bot	4	\perp		\sqcup	$\perp \downarrow$	\perp		\sqcup	11	11	Х		Ш	\perp	11	\perp		$\vdash \vdash$	\sqcup	11-	ļ	44	\perp	_		\vdash	\vdash	++	+	Н-	+		<u> </u>	- -	++	1-1	\dashv		-	+	+	+	++	++		+	+	\vdash	+-'
Monthly Monitoring		- 1		1	1	1 1	1 1		ı	i I	1 [1 1	х	x x	1 i	1 1	1 1	1 1	1	l i	l i	1 1		1 1	1 1	- 1		ıl	1 1	1 1	1 1	1 1	1 1	1		i i	1 1	1 1			- 1	1 1	- 1	1 1	1 1	1	. 1 '	1 1	- -		_ '